ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 16.10.2024

Просмотров: 145

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1 билет

2 билет

3 билет

4 билетИсточник: https://gomolog.ru/reshebniki/1-kurs/shimanovich-2014/367.html

5 билет

6 билет

7 билет

8 билет

9 билет

Гибридизация электронных облаков

10 билет

11 билет

12 билет

13 билет

14 билет

15 билет

16 билет

17 билет

18 билет

Водородная связь

19 билет

Термодинамическая система и ее состояния

Параметры термодинамической системы

Функци состояния термодинамической системы

Термодинамические процессы

20 билет

Термодинамические функции состояния: энергия Гиббса и энергия Гельмгольца. Критерии самопроизвольного протекания процессов. Способы расчета изменеия энергии Гиббса в ходе химической реакции.

21 билет

22 билет

23 билет

24 билет

25 билет

26 билет

27 билет

Химическая кинетика

28 билет

29 билет

30 билет

12. Химическое равновесие. Обратимые и необратимые реакции.

31 билет

32 билет

33 билет

34 билет

35 билет

36 билет

37 билет

38 билет

39 билет

40 билет

41 билет

42 билет

43 билет

Растворы.

Характеристика растворов. Процесс растворения.

Гидраты и кристаллогидраты.

44 билет

45 билет

46 билет

47 билет

Осмос. Осмотическое давление. Закон Вант-Гоффа. Зависит ли осмотическое давление от природы растворённого вещества?

48 билет

Давление насыщенного пара над раствором. Закон рауля.

49 билет

50 билет

51 билет

52 билет

53 билет

54 билет

55 билет

56 билет

57 билет

58 билет

Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации.

3.Реакции нейтрализации

59 билет

60 билет

61 билет

62 билет

63 билет

64 билет

65 билет

66 билет

67 билет

68 билет

Электролиз расплавов и растворов солей. Катодные и анодные процессы. Законы Фарадея.

Электролиз расплавов

Электролиз водных растворов

Законы электролиза

Выход по току

69 билет

70 билет

71 билет

72 билет

73 билет

74 билет

75 билет

76 билет

Лекция по теме «Химические источники тока»

77 билет

Коррозия металлов и методы защиты от коррозии

78 билет

79 билет

80 билет

81 билет

82 билет

83 билет

84 билет

85 билет



Водородный электрод применяют как электрод сравнения.




Рисунок к ст. Водородный электрод.

СТАНДАРТНЫЙ ПОТЕНЦИАЛ (нормальный потенциал), значение электродного потенциала, измеренное в стандартных условиях относительно выбранного электрода сравнения (стандартного электрода). Обычно стандартные потенциалы находят в условиях, когда термодинамич. активности а всех компонентов потенциалопределяющей р-ции, протекающей на исследуемом электроде, равны 1, а давление газа (для газовых электродов) равно 1,01 · 105 Па (1 атм). Для водных р-ров в качестве стандартного электрода используют водородный электрод (Pt; H2 [1,01·105Па], Н+ [a=1]), потенциал к-рого при всех т-рах принимается равным нулю (см. Электроды сравнения): стандартный потенциал равен эдс электрохимической цепи, составленной из исследуемого и стандартного электродов. Согласно рекомендациям ИЮПАК (1953), при схематич. изображении цепи (гальванич. ячейки) водородный электрод всегда записывается слева, исследуемый-справа. Потенциал исследуемого электрода считается положительным, если в режиме "источник тока" слева направо во внеш. цепи движутся электроны, а в р-ре - положительно заряженные частицы. Напр., стандартный потенциал хлорсеребряного электрода равен эдс гальванич. ячейки

-Pt, Н2[1,01·105Па]|НС1(аb=l)|AgCl, Ag|Pt +

Для любой электродной р-ции, включающей перенос n электронов, электродный потенциал определяется ур-нием:



где Е°-стандартный потенциал электрода, R-газовая постоянная, Т-абс. т-ра, F- постоянная Фарадея, аi-термодинамич. активность частиц (как заряженных, так и незаряженных), участвующих в электродной р-ции, vi-стехиометрич. коэффициенты (положит. числа для продуктов р-ций и отрицат. числа для исходных в-в, если при записи стехиометрич. ур-ния элек-трохим. процесса электроны входят в левую часть ур-ния, напр. AgCl + е : Ag + С1-). Значения стандартных потенциалов для ряда электродных процессов в водной среде приведены в таблице в порядке убывания окислит. способности соответствующих систем. Стандартные потенциалы металлов и водорода, расположенные в порядке их возрастания, составляют электрохимический ряд напряжений.


Стандартный потенциал определяется либо непосредственными измерениями эдс соответствующих электрохим. цепей с экстраполяцией на бесконечно разб. р-ры, либо расчетом - по данным о стандартных значениях изменения энергии Гиббса хим. р-ции DG0. В последнем случае р-цию представляют в виде суммы двух (или более) электродных р-ций, одна из к-рых -окис-лит.-восстановит. р-ция с искомым стандартным потенциалом   , а другая-с известным стандартным потенциалом .   . Если в условной схеме ячейки 1-й электрод записан слева, то



Из уравнения следует, что стандартные потенциалы, в свою очередь, м.б. использованы для расчета DG0 и константы равновесия К р-ции (ln К = — DG°/RT). Значения E0, рассчитанные на основе значений DG0, представлены в таблице; они далеко не всегда м. б. реализованы в электрохим. цепях из-за того, что предполагаемое равновесие электродной р-ции в действительности может не устанавливаться (это характерно для щелочных, щел.-зем. металлов и большинства орг. в-в в водных р-рах).

В неводных р-рителях стандартные потенциалы также определяют по отношению к потенциалу водородного электрода для каждого отдельного р-рителя. Ведется поиск стандартного электрода, потенциал к-рого можно было бы считать практически не зависящим от природы р-рителя, что позволило бы создать единую шкалу электродных потенциалов. В качестве таких электродов предложены системы: рубидий/ион рубидия, ферроцен/ферроциний-катион и бис(дифенил)хром(I)/ /бис(дифенил)хром(0), потенциалы к-рых из-за большого размера ионов и соотв. малой их сольватации незначительно (по сравнению с потенциалом водородного электрода) зависят от природы р-рителя. Последние два электрода рекомендованы в 1984 ИЮПАК в качестве электродов сравнения в неводных орг. средах.

Выбор электрода сравнения и стандартного состояния исследуемого электрода в системах с расплавами и твердым электролитом в большой мере определяется природой как исследуемого электродного процесса, так и ионного проводника. В широко используемых в качестве электролитов расплавах хлоридов металлов

стандартный потенциал берется в хлорной шкале, т. е. в качестве стандартного пользуются хлорным электродом в расплавленном хлориде (графит, Сl2 [1,01 · 105 Па], MC1z [расплав]), где М-металл (на практике обычно берут смесь хлоридов металла). Активность катионов Мz+ в индивидуальном расплаве принимается равной 1. В ряде высокотемпературных гальванич. элементов с твердым электролитом в качестве электрода сравнения применяют оксидные электроды, в частности вюститовый (Pt; Fe, FeO).

64 билет


ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, разность электростатич. потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение электродного потенциала обусловлено пространств. разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя. На границе между металлич. электродом и р-ром электролита пространств. разделение зарядов связано со след. явлениями: переносом ионов из металла в р-р в ходе установления электрохим. равновесия, кулоновской адсорбцией ионов из р-ра на пов-сть металла, смещением электронного газа за пределы положительно заряженного ионного остова кристаллич. решетки, специфич. (некулоновской) адсорбцией ионов или полярных молекул р-рителя на электроде и др. Последние два явления приводят к тому, что электродный потенциал не равен нулю даже при условиях, когда заряд пов-сти металла равен нулю (см. Потенциал нулевого заряда).
Абс. величину электродного потенциала отдельного электрода определить невозможно, поэтому измеряют всегда разность потенциалов исследуемого электрода и нек-рого стандартного электрода сравнения. Электродный потенциал равен эдс электрохим. цепи, составленной из исследуемого и стандартного электродов (диффузионный потенциал между разными электролитами, обусловленный различием скоростей движения ионов, при этом должен быть устранен). Для водных р-ров в качестве стандартного электрода обычно используют водородный электрод (Pt, Н2[0,101 МПа] | Н+[a= 1]), потенциал к-рого при давлении водорода 0,101 МПа и термодинамич. активности а ионов Нв р-ре, равной 1, принимают условно равным нулю (водородная шкала электродных потенциалов). При схематич. изображении цепи водородный электрод всегда записывают слева; напр., потенциал медного электрода в р-ре соли меди равен эдс цепи Pt, H2|HCl   CuCl2|Cu|Pt (две штриховые черты означают, что диффузионный потенциал на фанице НС1 и СuС12 устранен).
Если исследуемый электрод находится в стандартных условиях, когда активности всех ионов, определяющих электродный потенциал, равны 1, а давление газа (для газовых электродов) равно 0,101 МПа, значение электродного потенциала наз. стандартным (обозначение E°).

Оно связано со стандартным изменением энергии Гиббса   и константой равновесия Кр электрохим. р-ции ур-нием:   , где F - число Фарадея; п - число электронов, участвующих в р-ции; R - газовая постоянная; Т - абс. т-ра. Значения E° электрохим. систем по отношению к водородному электроду и протекающие на электродах р-ции сведены в спец. таблицы (подробнее см. Стандартный потенциал).
Зависимость электродного потенциала от термодинамич. активностей ai участников электрохим. р-ции выражается Нернста уравнением:



где vi - стехиометрич. коэф. участника р-ции, причем для исходных в-в это отрицат. величина, а для продуктов р-ции -положительная.
Если через электрод протекает электрич. ток, электродный потенциал отклоняется от равновесного значения из-за конечной скорости процессов, происходящих непосредственно на границе электрод - электролит.

Водородный электрод, платиновая пластинка, электролитически покрытая платиновой чернью, погружённая в раствор кислоты с определённой концентрацией ионов водорода Н+ и омываемая током газообразного водорода. Потенциал водородного электрода возникает за счёт обратимо протекающей реакции

Между водородом, адсорбированным платиновой чернью, и ионами водорода в растворе устанавливается равновесие. Потенциал электрода Е определяется уравнением Нернста:



где Т — абсолютная температура (К), аН— активная концентрация ионов водорода (г-ион/л), р — давление водорода [кгс/см2 (атм)], Е° — нормальный (или стандартный) потенциал водородного электрода при р = 1 кгс/см2 (1 атм) и aH= 1. При любой заданной температуре Е° условно принято считать равным нулю. От потенциала стандартного водородного электрода отсчитывают потенциалы всех других электродов (так называемая водородная шкала потенциалов). При работе с водородным электродом необходима тщательная очистка водорода от примесей. Особенно опасны соединения серы и мышьяка, а также кислород, реагирующий с водородом на поверхности платины с образованием воды, что приводит к нарушению равновесия