ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2024
Просмотров: 146
Скачиваний: 0
СОДЕРЖАНИЕ
Часть I. Способы передачи сообщений
1.1 Спектры периодических сигналов
1.2. Спектры непериодических сигналов
1.3. Сигналы электросвязи и их спектры
2.1. Принципы передачи сигналов электросвязи
3.1. Понятие о цифровых сигналах
3.2. Дискретизация аналоговых сигналов
3.3. Квантование и кодирование
3.4. Восстановление аналоговых сигналов
Глава 4. Принципы многоканальной передачи
4.1. Одновременная передача сообщений
4.2. Частотное разделение каналов
4.3. Временное разделение каналов
Глава 5. Цифровые системы передачи
5.1. Формирование группового сигнала
6.3. Регенерация цифровых сигналов
5.4. Помехоустойчивое кодирование
6.1. Плезиохронная цифровая иерархия
6.2. Синхронная цифровая иерархия
7.3. Волоконно-оптические кабельные линии
8.1. Предпосылки создания транспортных сетей
8.2. Системы передачи для транспортной сети
Vc низшего порядка (Low order vc, lovc)
Vc высшего порядка (High order vc, hovc)
8.3. Модели транспортных сетей
8.4. Элементы транспортной сети
8.5. Архитектура транспортных сетей
Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи
Глава 9. Основные понятия и определения
9.1. Информация, сообщения, сигналы
9.2. Системы и сети электросвязи
9.3. Эталонная модель взаимосвязи открытых систем
9.4. Методы коммутации в сетях электросвязи
9.5 Методы маршрутизации в сетях электросвязи
Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации
10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи
10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла
10.3.1 Модель коммутационного узла
10.3.2. Структура коммутационных полей станций и узлов
10.3.3. Элементы теории телетрафика
11.2. Направления развития телеграфной связи
Глава 12. Службы пд. Защита от ошибок и преобразование сигналов
12.2. Сигналы и виды модуляции, используемые в современных модемах
13.1. Компьютеры — архитектура и возможности
13.2. Принципы построения компьютерных сетей
13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
13.4. Сетевые операционные системы
13.5. Локальные компьютерные сети
13.6. Глобальные компьютерные сети
13.7. Телефонная связь по компьютерным сетям
14.1. Основы факсимильной связи
14.2. Организация факсимильной связи
Глава 15. Другие службы документальной электросвязи
Глава 16. Единая система документальной электросвязи
16.1. Интеграция услуг документальной электросвязи [1]
16.2. Назначение и основные принципы построения служб обработки сообщений [2]
16.3. Многофункциональные терминалы
Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах
17.2. Правовые и организационные аспекты информационной безопасности
17.3. Технические аспекты информационной безопасности
Часть III. Интеграция сетей и служб электросвязи
Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)
18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания
18.2. Службы и услуги узкополосной цсио
18.3. Система управления у-цсио
Глава 19. Широкополосные и интеллектуальные сети
19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)
19.3. Способы коммутации в ш-цсио
19.4. Построение коммутационных полей станций ш-цсио
19.5. Причины и условия перехода к интеллектуальной сети (ис)
Глава 20. Система межстанционной сигнализации по общему каналу в цсио
20.1. Понятие об общем канале сигнализации
20.2. Протоколы системы сигнализации № 7 itu-t
20.3. Способы защиты от ошибок в окс № 7
20.5. Способы построения сигнальной сети
Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»
21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet
21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»
21.3. Цифровая коммутационная система с программным управлением с&с08
21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750
Часть IV. Современные методы управления в телекоммуникациях
22.1. Многоуровневое представление задач управления телекоммуникациями
22.2. Функциональные группы задач управления
Глава 23. Интегрированные информационные системы управления предприятиями электросвязи
23.1. Понятия и определения в области информационных систем управления предприятием
Глава 24. Управление услугами. Качество предоставляемых услуг
24.1. Система качества услуг электросвязи
24.2. Базовые составляющие обеспечения качества услуги
24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи
Глава 25. Управление услугами.
25.3. Централизованный способ построения системы расчетов
25.4. Интеграция аср с системами управления tmn
25.5. Основные технические требования для аср
25.6. Обзор автоматизированных систем расчетов
Глава 26. Управление сетями и сетевыми элементами
26.1. Архитектура систем управления сетями и сетевыми элементами
26.2. Системы управления первичными и вторичными сетями
26.3. Принципы построения системы управления
Глава 27. Решения компании strom telecom в области tmn (Foris oss)
27.1. Общая характеристика семейства продуктов Foris oss
27.2. Автоматизация расчетов. Подсистема TelBill
27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс
27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge
27.5. Подсистемы TelRes, TelTe, TelRc
27.6. Система «Электронный замок»
27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)
Группы однотипных или разнотипных виртуальных контейнеров VC передаются между элементами транспортной сети (от отправителя информации к получателю) по линиям передачи в виде информаци-онных структур, называемых синхронными транспортными модулями (Synchronous Transport Module - STM). «Транспортирование» STM осуществляется с разными скоростями передачи соответствующим различным порядком STM-1, 4, 16, 64. STM-N оснащаются соответст-вующими заголовками, обеспечивающими передачу STM с полной функцией ОАМ в пределах регенерационной секции (Regeneration Section ОН - RSOH) и мультиплексорной секции (Multiplex Section ОН MSOH). Упрощенная функциональная схема системы передачи SDH, которая является основным структурным звеном транспортной сети приведена на рис. 8.1.
На рисунке приведены два вида секций, которые называются «Регенерационная секция» и «Мультиплексорная секция».
«Регенерационная секция» представляет собой сегмент системы дачи между оконечным оборудованием сетевого элемента, в ко-тором сигнал STM-N передается или принимается и регенератором, или между двумя смежными регенераторами.
«Мультиплексорная секция» - это средство передачи информации между двумя сетевыми элементами, в одном из которых формируется (собирается) сигнал STM-N, а в другом «разбирается до компонентных потоков. В общем случае транспортная сеть SDH состоит из мультиплексорных секций, для которых уровень SDHсигнала может быть разным в зависимости от требуемой емкости канала передачи для каждой секции.
«Тракт» - означает логическое соединение между точкой системы передач SDH, в которой производится «сборка» виртуального контей-нера VC (например, из компонентных потоков PDH) и точкой, в которой VC «разбирается». Тракт можно представить себе как трубку, проложенную через мультиплексорные секции, непосредственно со-единяющую две точки, между которыми осуществляется передача информации. Для «транспортировки» различных объемов цифровой информации разработаны виртуальные контейнеры различного типа, для европейских потоков PDH таковыми являются:
Vc низшего порядка (Low order vc, lovc)
VC-12 для «транспортировки» E1 = 2048 Кбит/с (2 М)
VC-22 для «транспортировки» Е2 = 8448 Кбит/с (8 М)
Vc высшего порядка (High order vc, hovc)
VC-3 для «транспортировки» ЕЗ = 34368 Кбит/с (34 М)
VC-4 для «транспортировки» Е4 = 139264 Кбит/с (140 М)
В зависимости от «емкости» виртуального контейнера различают тракты VC-12, VC-22 (низшего порядка) и тракты виртуальных контейнеров VC-3, VC-4 (высшего порядка).
Виртуальный контейнер является элементарной единицей обраба-тываемой информации в транспортной системе SDH при мультиплек-сировании, перекрестных соединениях (кросс-коннекция) и т.д. При этом нет необходимости доступа к «транспортируемой» информации, так как различная информация представлена в одном и том же виде, который именуется виртуальными контейнерами (в то же время к VC добавляется информация, необходимая для его обработки в пути следования).
Как указывалось выше, виртуальные контейнеры передаются меж-ду элементами транспортной сети в виде STM различного порядка. Основной (первичной) структурой для получения потоков STM явля-ется STM-1 с нормализованной скоростью передачи 155,52 Мбит/с. При этом, в зависимости от потребности сети, в цифровом потоке STМ 1 возможна передача виртуальных контейнеров различного типа и в различных сочетаниях:
STM |
2М |
34 М |
STM-1 |
63 |
- |
STM-1 |
- |
3 |
STM-1 |
42 |
1 |
STM-1 |
21 |
2 |
STM более высокого порядка могут быть получены из цифрового потока STM-1 простым синхронным мультиплексированием согласно рекомендации G.707 сектора телекоммуникаций Международного Союза электросвязи (МСЭ-Т):
Причем мультиплексирование, начиная с STM-4, осуществляется в оптическом диапазоне.
Информационные структуры STM-N передаются между элемента-ми транспортной сети по линиям передачи, организованным по воло-конно-оптическим кабелям связи, спутниковым линиям или по цифро-вым радиорелейным линиям (учитывая особенности мультиплексиро-вания, по ЦРРЛ можно передавать в электрическом виде только циф-ровой поток STM-1).
Характерной особенностью транспортных систем передачи SDH. показанных на рис. 8.1, является высокая степень резервирования как линейных трактов, так и основных узлов мультиплексорного оборудо-вания. Так, линии передачи между элементами сети обычно полно стью резервируются (рис. 8.1), что позволяет избежать потерь огром-ных потоков информации при авариях (например, даже в первичном потоке STM-1 может передаваться трафик 1920 каналов ТЧ в режиме «транспортирования» потока 140 М).
Пример построения фрагмента транспортной сети с использо-ванием систем передачи SDH приведен на рис. 8.2. Как видно им рисунка, транспортная сеть предназначена для передачи любых информационных сообщений в цифровом виде. По своей сути транспортная сеть - это совокупность узлов коммутации, пунктов ввода отдельных цифровых потоков, линий передачи с регенераторами и мультиплексорами. Во всех узлах транспортной сети возможно переключение трактов для вывода и ввода информа-ционных потоков. Кроме того, в узлах сети тракты могут пере ключаться в случае повреждений на линии передачи или в обо-рудовании.
8.3. Модели транспортных сетей
Принципы построения транспортных сетей определены сектором телекоммуникаций Международного Союза Электросвязи (МСЭ-Т) в серии рекомендаций [5, 6, 7]:
-
G.803 - транспортная сеть SDH;
-
G.805 - общая функциональная архитектура транспортных сетей,
-
1.326 - функциональная архитектура транспортной сети на основе ATM;
-
G.872 - оптическая транспортная сеть.
В этих рекомендациях предложено рассматривать транспортные сети в виде многоуровневых моделей (рис. 8.3). Каждый уровень обычно представлен отдельной службой электросвязи, предостав ляющей услуги другой службе, расположенной выше.
В структурах моделей определены функциональные уровни: физический, трактов и каналов.
Физический уровень. Данный уровень образован средой переда-чи сигналов (волоконно-оптической линией, медной линией, радиоли нией) секциями - участками, где происходит регенерация (ретранс-ляция) сигналов и мультиплексирование (объединение и разделение) них сигналов.
Рис. 8.3. Модели транспортных сетей
Благодаря наличию секции регенерации (ретрансляции) удается «очистить» сигнал от искажений и помех. Органи-зация секции мультиплексирования позволяет эффективно использо-вать физическую среду за счет временного разделения передачи ка-налов. При этом можно реализовать резервирование любой секции мультиплексирования, если предусмотреть дополнительную физиче-скую цепь оборудование для передачи сигналов по ней и оборудование .тематического переключения.
Физический уровень оптической транспортной сети имеет свою особенность, которая состоит в том, что все преобразования сигналов тмив, ретрансляция, объединение и разделение, вывод и ввод) производятся исключительно оптическими средствами. Таким способом достигаются наивысшие скорости передачи информационных от десятков гигабит до десятков терабит в секунду (Тбит/с). В физической среде, представляемой одномодовым стекловолокном, объединяются (мультиплексируются) множество оптических несущих частот (от 2х до 132 и более), каждая из которых модулирована информационным сигналом.
Уровень трактов. Тракты каждой транспортной сети создаются, чтобы обеспечить сквозное прохождение информационных сигналов. Их можно сравнить с маршрутами движения поездов на железной дороге (железнодорожные пути - это физическая среда, а крупные узловые станции подобно мультиплексорам объединяют и разделяют транспортные потоки). По маршрутам железных дорог могут следовать различные поезда и перевозить различные грузы. Аналогично в транспортной телекоммуникационной сети через физические цепи могут передаваться строго циклически цифровые потоки в виде двоичных импульсных последовательностей, сформированных из различных сигналов. Каждому сигналу отведены в циклах временные позиции. Эти позиции могут быть закреплены за соединениями маршрутами в сети. В сети SDH маршруты прописываются в заголовках циклически передаваемых данных под названием виртуальные контейнеры (VC-12, VC-3, VC-4). При этом виртуальные контейнеры VC -12 могут быть объединены в блоки данных и помещены в виртуальные контейнеры VC-3, VC-4, имеющие большую емкость, но отправляемые также циклически, как VC-12. Это совмещение данных VC-12 и VC-3, VC-4 можно сравнить с размещением железнодорожных контейнеров на специальных платформах, которые перемещаются по железной дороге от станции формирования состава до станции расформирования.
Тракты в сети ATM отличаются от трактов сети SDH тем, что они образуются только при наличии информационного сообщения, а в его отсутствии физические ресурсы транспортной сети отдаются для по редачи других сигналов. Сравните, на место ожидавшего пассажира в пассажирском вагоне поезда может быть посажен на любой станции пассажир, следующий своим маршрутом. По этой причине путь сле-дования данных в сети ATM называют виртуальным. Он прописыва-ется в специальных таблицах коммутатором ATM и ячейках, перено сящих информационные сообщения. По данным таблиц считываются заголовки ячеек ATM для каждого участка сети, и происходит маршрутизация групповых информационных потоков.
Маршруты в оптической транспортной сети определяются номина-лами несущих частот оптического диапазона. При этом частота может быть одной и той же или изменяться на разных участках сети, однако маршрут следования информационных данных сохраняется.
Уровень каналов. Для любой из рассмотренных моделей трат портных сетей этот уровень выполняет функции интерфейса со вторич ными сетями (коммутаторами телефонных, широкополосных, компью терных сетей и т.д.). Как правило, на уровне каналов создаются типовые электрические и оптические интерфейсы. Примеры этих каналов: Е1 дли скорости передачи 2,048 Мбит/с; Е2 для скорости передачи 8,448 Мбит/с; ЕЗ для скорости передачи 34,368 Мбит/с; Е4 для скорости передачи 139,264 Мбит/с; STM-1 для скорости передачи 155,520 Мбит/с.
Транспортные сети, построенные в соответствии с различными моделями, совместимы между собой на уровнях каналов или трактов