Файл: Телекоммуникационные системы и сети - КНИГА.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.10.2024

Просмотров: 170

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Часть I. Способы передачи сообщений

Глава 1. Спектры

1.1 Спектры периодических сигналов

1.2. Спектры непериодических сигналов

1.3. Сигналы электросвязи и их спектры

Глава 2. Модуляция

2.1. Принципы передачи сигналов электросвязи

2.2. Амплитудная модуляция

2.3 Угловая модуляция

2.4. Импульсная модуляция

2.5. Демодуляция сигналов

Глава 3. Цифровые сигналы

3.1. Понятие о цифровых сигналах

3.2. Дискретизация аналоговых сигналов

3.3. Квантование и кодирование

3.4. Восстановление аналоговых сигналов

Глава 4. Принципы многоканальной передачи

4.1. Одновременная передача сообщений

4.2. Частотное разделение каналов

4.3. Временное разделение каналов

Глава 5. Цифровые системы передачи

5.1. Формирование группового сигнала

5.2. Синхронизация

6.3. Регенерация цифровых сигналов

5.4. Помехоустойчивое кодирование

Глава 6. Цифровые иерархии

6.1. Плезиохронная цифровая иерархия

6.2. Синхронная цифровая иерархия

Глава 7. Линии передачи

7.1. Медные кабельные линии

7.2. Радиолинии

7.3. Волоконно-оптические кабельные линии

Глава 8. Транспортные сети

8.1. Предпосылки создания транспортных сетей

8.2. Системы передачи для транспортной сети

Vc низшего порядка (Low order vc, lovc)

Vc высшего порядка (High order vc, hovc)

8.3. Модели транспортных сетей

8.4. Элементы транспортной сети

8.5. Архитектура транспортных сетей

Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи

Глава 9. Основные понятия и определения

9.1. Информация, сообщения, сигналы

9.2. Системы и сети электросвязи

9.3. Эталонная модель взаимосвязи открытых систем

9.4. Методы коммутации в сетях электросвязи

9.5 Методы маршрутизации в сетях электросвязи

Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации

Глава 10. Телефонные службы

10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи

10.2. Структура городских телефонных сетей (гтс) с низким уровнем цифровизации и перспективы развития

10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла

10.3.1 Модель коммутационного узла

10.3.2. Структура коммутационных полей станций и узлов

10.3.3. Элементы теории телетрафика

Глава 11. Телеграфные службы

11.1. Сети телеграфной связи

11.2. Направления развития телеграфной связи

Глава 12. Службы пд. Защита от ошибок и преобразование сигналов

12.1. Методы защиты от ошибок

12.2. Сигналы и виды модуляции, используемые в современных модемах

Глава 13. Службы пд. Сети пд.

13.1. Компьютеры — архитектура и возможности

13.2. Принципы построения компьютерных сетей

13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей

13.4. Сетевые операционные системы

13.5. Локальные компьютерные сети

13.6. Глобальные компьютерные сети

13.7. Телефонная связь по компьютерным сетям

Глава 14. Факсимильные службы

14.1. Основы факсимильной связи

14.2. Организация факсимильной связи

Глава 15. Другие службы документальной электросвязи

15.1. Видеотекс

15.2. Голосовая почта

Глава 16. Единая система документальной электросвязи

16.1. Интеграция услуг документальной электросвязи [1]

16.2. Назначение и основные принципы построения служб обработки сообщений [2]

16.3. Многофункциональные терминалы

Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах

17.1. Общие положения

17.2. Правовые и организационные аспекты информационной безопасности

17.3. Технические аспекты информационной безопасности

Часть III. Интеграция сетей и служб электросвязи

Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)

18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания

18.2. Службы и услуги узкополосной цсио

18.3. Система управления у-цсио

Глава 19. Широкополосные и интеллектуальные сети

19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)

19.2. Услуги ш-цсио

19.3. Способы коммутации в ш-цсио

19.4. Построение коммутационных полей станций ш-цсио

19.5. Причины и условия перехода к интеллектуальной сети (ис)

19.6. Услуги ис

Глава 20. Система межстанционной сигнализации по общему каналу в цсио

20.1. Понятие об общем канале сигнализации

20.2. Протоколы системы сигнализации № 7 itu-t

20.3. Способы защиты от ошибок в окс № 7

20.4. Характеристики окс

20.5. Способы построения сигнальной сети

Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»

21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet

21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»

21.3. Цифровая коммутационная система с программным управлением с&с08

21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750

Часть IV. Современные методы управления в телекоммуникациях

Глава 22. Общие положения

22.1. Многоуровневое представление задач управления телекоммуникациями

22.2. Функциональные группы задач управления

Глава 23. Интегрированные информационные системы управления предприятиями электросвязи

23.1. Понятия и определения в области информационных систем управления предприятием

23.2. Анализ структуры интегрированной информационной системы управления предприятием регионального оператора связи

23.3. Новое системное проектирование как передовая технология на этапе внедрения современных информационных систем

23.4. Требования к функциональности интегрированной информационной системы управления предприятием для регионального оператора связи

23.5. Требования к используемым информационным технологиям, техническим средствам и программному обеспечению

Глава 24. Управление услугами. Качество предоставляемых услуг

24.1. Система качества услуг электросвязи

24.2. Базовые составляющие обеспечения качества услуги

24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи

Глава 25. Управление услугами.

25.1. Общие положения

25.2. Классификация аср

25.3. Централизованный способ построения системы расчетов

25.4. Интеграция аср с системами управления tmn

25.5. Основные технические требования для аср

25.6. Обзор автоматизированных систем расчетов

25.7. Заключение

Глава 26. Управление сетями и сетевыми элементами

26.1. Архитектура систем управления сетями и сетевыми элементами

26.2. Системы управления первичными и вторичными сетями

26.3. Принципы построения системы управления

Глава 27. Решения компании strom telecom в области tmn (Foris oss)

27.1. Общая характеристика семейства продуктов Foris oss

27.2. Автоматизация расчетов. Подсистема TelBill

27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс

27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge

27.5. Подсистемы TelRes, TelTe, TelRc

27.6. Система «Электронный замок»

27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)

27.8. Подсистема Контакт-центр

9.4. Методы коммутации в сетях электросвязи

Организация связи в распределенных сетях базируется на прин­ципах коммутации и реализуется в узлах, соединяющих два или не­сколько входящих и исходящих каналов в требуемых направлениях. В целом задачу распределения информационных потоков выполняет система коммутации, состоящая из собственно сети, коммутационных станций или узлов коммутации (УК), системы подключения пользова­телей и оконечных пунктов (ОП). Наиболее важную роль в ней играют УК, обеспечивающие установление, поддержание и разъединение соединений между терминалами (телефонными аппаратами, компью­терами и т.п.), каждому из которых присвоен адрес (номер).

Известны два основных принципа коммутации: непосредственное соединение и соединение с накоплением информации [4]. При непо­средственном соединении осуществляется физическое соединение входящих в УК каналов с соответствующими адресу исходящими ка­налами. При соединении с накоплением сообщений сигналы из вхо­дящих в УК каналов сначала записываются в запоминающем устрой­стве, откуда через определенный промежуток времени поступают в исходящие каналы.

Необходимость в соединении с накоплением возникает в силу раз­ных причин. Главной из них является то, что в момент прихода сигна-ла по входящему в УК каналу, требуемый исходящий канал может оказаться занятым передачей информации от другого источника.

В таком случае возникают альтернативные решения: первое -уведомить источник сообщений о невозможности установления требуемого соединения в данный момент, второе - запомнить входящее сообщение и передать его в исходящий канал после его освобожде­ния от передачи предыдущего сообщения. Заметим, что системы, по­строенные по первому принципу, получили название систем с отказа­ми, а построенные по второму принципу - систем с ожиданием. Необ­ходимо иметь в виду, что поскольку получение источником сообщений (ИС) отказа в установлении соединения не освобождает его от необ­ходимости передачи сообщения, то ИС оказывается вынужденным повторять попытки установления соединения до получения положи­тельного результата. Так как подлежащая передаче информация все это время хранится в памяти ИС, то различие между рассматривае­мыми принципами коммутации заключается не в том, что в первом случае запоминающее устройство отсутствует, а в том, что оно нахо­дится в ИС (в первом случае), т.е. децентрализовано, а во втором случае - в УК, т.е. централизовано. Это различие в месте и способе хранения существенным образом влияет на услуги, оказываемые абонентам сети с различными методами распределения информации.


Принцип непосредственного соединения реализуется в системе коммутации каналов (КК). Под коммутацией каналов понимается со­вокупность операций по соединению каналов для получения сквозно­го канала, связывающего через узлы коммутации один ОП с другим. При этом выражение «соединение каналов» следует понимать не только в смысле физического соединения, но и более широко - как занятие, резервирование средств передачи и коммутации для пары взаимодействующих ОП во время сеанса связи. Таким образом, при коммутации каналов сначала организуется сквозной канал передачи сообщений между взаимодействующими абонентами через узлы коммутации, а затем осуществляется передача сообщений.

До тех пор пока взаимосвязанные абоненты не сообщат о своем решении ликвидировать установленное соединение, выделенные ре­сурсы сети находятся в их монопольном владении независимо от то­го, используются ли они в данный момент или нет.

Такой режим имеет определенное достоинство, связанное с тем, что после организации соединения абоненты могут вести передачу в любое время независимо от нагрузки, поступающей от других абонен­тов. Кроме того, передачи осуществляются с фиксированной задерж­кой, т.е. может быть реализован режим передачи в реальном мас­штабе времени, что особенно важно при работе в режиме диалога (переговоров двух абонентов или обмене информацией между двумя компьютерами).

Однако этот метод имеет и недостатки, главным из которых явля­ется плохое использование ресурсов сети, в частности каналов, если взаимодействующие абоненты недостаточно активны и между пере­дачами сообщений наблюдаются длительные паузы. В реальных сис

темах передачи сообщений доля пауз может быть достаточно боль-шой. Даже в телефонных каналах речь занимает менее половины времени, а при передаче данных при диалоговом обмене человека и компьютера полезная нагрузка составляет единицы процентов от вы­деленной пропускной способности.

Для повышения эффективности использования пропускной спо-собности трактов сети в таких диалоговых системах и были разрабо-таны методы коммутации, при которых пропускная способность сети не закрепляется на все время сеанса связи двух абонентов, а пред-ставляется им лишь по мере необходимости при появлении у них со-общений для передачи.

Коммутацией с накоплением называется совокупность операций при приеме на УК сообщения или его части, накопления и последую-щей передачи сообщения или его части в соответствии с содержа­щимся в нем (ней) адресом.


В сети с КК (рис. 9.15) процесс передачи состоит из следующих операций:

  • вызывающий абонент Абn с помощью вызывного устройства по-сылает по абонентской линии в узел КК заявку на соединение с абонентом Абm, содержащую условный адрес вызываемого абонента;

  • аппаратура коммутации узла КК по полученной заявке осу­ществляет соединение абонентской линии Аб.лин„ с абонентской ли­нией Аб.линт, если абоненты принадлежат одному узлу КК, или со­единительной линией между узлами, к которым принадлежат абонен-ты (сквозной канал может быть организован через несколько проме­жуточных узлов КК, где осуществляется аналогичная коммутация);

  • после организации сквозного канала связи абонент Абm получает из узла КК сигнал вызова, а абонент Абn - сигнал установления со­единения;

  • происходит передача информации между абонентами, при этом обмен может быть одно- и двусторонним, так как обычно коммутиру-ются двусторонние каналы связи;

  • после завершения сеанса передачи информации и получения от абонента сигнала отбоя аппаратура коммутации узлов КК разрушает ранее установленные соединения каналов.

При отсутствии свободного канала либо его неисправности на лю-бом из участков в заданном направлении или отсутствии свободных станционных устройств в УК соединение абонентов не может быть установлено и узел коммутации посылает Абn сигнал отказа в обслу­живании (сигнал занятости). Для установления соединения Абn должен повторить заявку на соединение. Такой способ обслуживания, при котором вызов (заявка на соединение), поступивший в момент отсутствия свободных линий, или станционных устройств, получает отказ (теряется), называется обслуживанием с потерями.

Рис. 9.15. Сети ПДС с коммутацией: а - каналов; б - сообщений или пакетов

При системе коммутации с накоплением (КН) ОП имеет постоян­ную прямую связь со своим УК (иногда с несколькими) и передает на него информацию. Затем эта информация поэтапно передается через узлы коммутации другим абонентам, причем в случае занятости исхо­дящих каналов информация запоминается в узлах и передается по мере освобождения каналов в нужном направлении. Известны две разновидности системы с накоплением: система коммутации сооб­щений (КС) и система коммутации пакетов (КП). В сети с КС (см. рис. 9.15) процесс передачи следующий:


  • вызывающий абонент Абn передает в узел коммутации подле-жащее передаче сообщение вместе с условным адресом абонента

  • в узле КС сообщение запоминается и по его адресу определяет-ся канал, по которому оно должно быть передано;

  • если канал к соседнему узлу КС свободен, то сообщение немед-ленно передается на соседний узел КС, в котором повторяется та же операция;

  • если канал к соседнему узлу КС занят, то сообщение хранится и устройствах памяти вплоть до освобождения канала;

  • хранящиеся сообщения устанавливаются в очередь по направ-лениям передачи с учетом категории срочности.

Такой способ обслуживания, при котором заявка, поступившая и момент отсутствия свободных линий или приборов, ожидает их ос-вобождения, называется обслуживанием с ожиданием.

Метод КС нашел применение на телеграфных сетях общего пользования.

Метод коммутации пакетов (см. рис. 9.15) по своей идеологии совпадает с методом КС и отличается лишь тем, что длинные сооб-щения передаются не целиком, а разбиваются на относительно ко-роткие части - пакеты. Различают два способа (режима) передачи пикетов: режим виртуальных соединений и датаграммный.

Виртуальные соединения. По сути, это коммутация каналов, но не напрямую, а через память управляющих компьютеров в центрах коммутации с использованием пакетов при передаче сообщений, виртуальной сети, прежде чем начать передачу пакетов, абоненту-получателю направляется служебный пакет, прокладывающий вирту-альное соединение. В каждом узле этот пакет оставляет распоряже­ние вида: пакеты k-го виртуального соединения, пришедшие из i-го канала, следует направлять в j-й канал. Таким образом, виртуальное (условное) соединение существует только в памяти управляющего компьютера. Дойдя до абонента-получателя, служебный пакет за­прашивает у него разрешение на передачу, сообщив, какой объем памяти понадобиться для приема. Если его компьютер располагает такой памятью и свободен, то посылается согласие абоненту-отправителю (также в виде специального служебного пакета) на пе­редачу сообщения. Получив подтверждение, абонент-отправитель приступает к передаче сообщения обычными пакетами. Пакеты бес­препятственно проходят друг за другом по виртуальному соединению (и каждом узле их ждет инструкция, которая обрабатывается управ­ляющим компьютером) и в том же порядке попадают абоненту-получателю, где, освободившись от концевиков и заголовков, образу-ют передаваемое сообщение, которое направляется на седьмой уровень. Виртуальное соединение может существовать до тех пор, пока отправленный одним из абонентов, специальный служебный пакет не сотрет инструкции в узлах. Режим виртуальных соединений эффективен при передаче больших массивов информации и обладает всеми пре­имуществами методов коммутации каналов и пакетов.


Датаграммы. Для коротких сообщений более эффективен датаграммный режим, не требующий довольно громоздкой процедуры ус­тановления виртуального соединения между абонентами. Термин «датаграмма» применяют для обозначения самостоятельного пакета, движущегося по сети независимо от других пакетов. Получив дата-грамму, узел коммутации направляет ее в сторону смежного узла, максимально приближенного к адресату. Когда смежный узел под­тверждает получение пакета, узел коммутации стирает его в своей памяти. Если подтверждение не получено, узел коммутации отправ­ляет пакет в другой смежный узел и т.д., до тех пор пока пакет не бу­дет принят. Все узлы, окружающие данный, ранжируются по близости к адресату. Первый ранг получает ближайший к адресату узел, вто­рой - ближайший из остальных и т.д. Пакет посылается сначала в узел первого ранга, при неудаче - в узел второго ранга и т.д. Описан­ная процедура известна как алгоритм маршрутизации. Кроме детер­минированных алгоритмов маршрутизации, где перспективность узла для передачи датаграммы оценивается с помощью конкретного ре­шающего правила, существуют вероятностные алгоритмы, где узел передачи выбирается случайно. Очевидно, что при такой маршрути­зации каждая датаграмма будет идти по случайной траектории, и, следовательно, момент поступления ее к адресату будет случайным. При этом свойствами случайности можно управлять, т.е. добиваться, чтобы среднее время доставки не превышало заданного, а вероят­ность того, что какая-то датаграмма задержится более наперед за­данного числа секунд, была бы достаточно малой. Датаграммный ре­жим используется, в частности, Internet, в протоколах UDP (User Data­gram Protocol) и TFTP (Trivial File Transfer Protocol).

Очевидно, что у каждого из рассмотренных методов коммутации имеется своя область применения, обусловленная его особенно­стями. Отсюда следует целесообразность сочетания разных мето­дов коммутации на сетях, объединяющих большое число абонентов с отличающимися друг от друга величинами нагрузки, характером ее распределения во времени, объемами сообщений, используемой оконечной аппаратурой. На таких сетях при небольшой средней на­грузке и передаче сообщений большими массивами в небольшое число адресов доля потери времени на установление соединения сравнительно невелика и предпочтительнее использовать систему с КК. При передаче же многоадресных сообщений, необходимости обеспечения приоритетности сообщениям высокой категории сроч­ности и при большой загрузке абонентских установок более эффективно использовать систему с КС. При передаче коротких сообщений в интерактивном (диалоговом) режиме наиболее целесообразно испольэовать КП.