Файл: Телекоммуникационные системы и сети - КНИГА.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.10.2024

Просмотров: 226

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Часть I. Способы передачи сообщений

Глава 1. Спектры

1.1 Спектры периодических сигналов

1.2. Спектры непериодических сигналов

1.3. Сигналы электросвязи и их спектры

Глава 2. Модуляция

2.1. Принципы передачи сигналов электросвязи

2.2. Амплитудная модуляция

2.3 Угловая модуляция

2.4. Импульсная модуляция

2.5. Демодуляция сигналов

Глава 3. Цифровые сигналы

3.1. Понятие о цифровых сигналах

3.2. Дискретизация аналоговых сигналов

3.3. Квантование и кодирование

3.4. Восстановление аналоговых сигналов

Глава 4. Принципы многоканальной передачи

4.1. Одновременная передача сообщений

4.2. Частотное разделение каналов

4.3. Временное разделение каналов

Глава 5. Цифровые системы передачи

5.1. Формирование группового сигнала

5.2. Синхронизация

6.3. Регенерация цифровых сигналов

5.4. Помехоустойчивое кодирование

Глава 6. Цифровые иерархии

6.1. Плезиохронная цифровая иерархия

6.2. Синхронная цифровая иерархия

Глава 7. Линии передачи

7.1. Медные кабельные линии

7.2. Радиолинии

7.3. Волоконно-оптические кабельные линии

Глава 8. Транспортные сети

8.1. Предпосылки создания транспортных сетей

8.2. Системы передачи для транспортной сети

Vc низшего порядка (Low order vc, lovc)

Vc высшего порядка (High order vc, hovc)

8.3. Модели транспортных сетей

8.4. Элементы транспортной сети

8.5. Архитектура транспортных сетей

Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи

Глава 9. Основные понятия и определения

9.1. Информация, сообщения, сигналы

9.2. Системы и сети электросвязи

9.3. Эталонная модель взаимосвязи открытых систем

9.4. Методы коммутации в сетях электросвязи

9.5 Методы маршрутизации в сетях электросвязи

Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации

Глава 10. Телефонные службы

10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи

10.2. Структура городских телефонных сетей (гтс) с низким уровнем цифровизации и перспективы развития

10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла

10.3.1 Модель коммутационного узла

10.3.2. Структура коммутационных полей станций и узлов

10.3.3. Элементы теории телетрафика

Глава 11. Телеграфные службы

11.1. Сети телеграфной связи

11.2. Направления развития телеграфной связи

Глава 12. Службы пд. Защита от ошибок и преобразование сигналов

12.1. Методы защиты от ошибок

12.2. Сигналы и виды модуляции, используемые в современных модемах

Глава 13. Службы пд. Сети пд.

13.1. Компьютеры — архитектура и возможности

13.2. Принципы построения компьютерных сетей

13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей

13.4. Сетевые операционные системы

13.5. Локальные компьютерные сети

13.6. Глобальные компьютерные сети

13.7. Телефонная связь по компьютерным сетям

Глава 14. Факсимильные службы

14.1. Основы факсимильной связи

14.2. Организация факсимильной связи

Глава 15. Другие службы документальной электросвязи

15.1. Видеотекс

15.2. Голосовая почта

Глава 16. Единая система документальной электросвязи

16.1. Интеграция услуг документальной электросвязи [1]

16.2. Назначение и основные принципы построения служб обработки сообщений [2]

16.3. Многофункциональные терминалы

Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах

17.1. Общие положения

17.2. Правовые и организационные аспекты информационной безопасности

17.3. Технические аспекты информационной безопасности

Часть III. Интеграция сетей и служб электросвязи

Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)

18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания

18.2. Службы и услуги узкополосной цсио

18.3. Система управления у-цсио

Глава 19. Широкополосные и интеллектуальные сети

19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)

19.2. Услуги ш-цсио

19.3. Способы коммутации в ш-цсио

19.4. Построение коммутационных полей станций ш-цсио

19.5. Причины и условия перехода к интеллектуальной сети (ис)

19.6. Услуги ис

Глава 20. Система межстанционной сигнализации по общему каналу в цсио

20.1. Понятие об общем канале сигнализации

20.2. Протоколы системы сигнализации № 7 itu-t

20.3. Способы защиты от ошибок в окс № 7

20.4. Характеристики окс

20.5. Способы построения сигнальной сети

Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»

21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet

21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»

21.3. Цифровая коммутационная система с программным управлением с&с08

21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750

Часть IV. Современные методы управления в телекоммуникациях

Глава 22. Общие положения

22.1. Многоуровневое представление задач управления телекоммуникациями

22.2. Функциональные группы задач управления

Глава 23. Интегрированные информационные системы управления предприятиями электросвязи

23.1. Понятия и определения в области информационных систем управления предприятием

23.2. Анализ структуры интегрированной информационной системы управления предприятием регионального оператора связи

23.3. Новое системное проектирование как передовая технология на этапе внедрения современных информационных систем

23.4. Требования к функциональности интегрированной информационной системы управления предприятием для регионального оператора связи

23.5. Требования к используемым информационным технологиям, техническим средствам и программному обеспечению

Глава 24. Управление услугами. Качество предоставляемых услуг

24.1. Система качества услуг электросвязи

24.2. Базовые составляющие обеспечения качества услуги

24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи

Глава 25. Управление услугами.

25.1. Общие положения

25.2. Классификация аср

25.3. Централизованный способ построения системы расчетов

25.4. Интеграция аср с системами управления tmn

25.5. Основные технические требования для аср

25.6. Обзор автоматизированных систем расчетов

25.7. Заключение

Глава 26. Управление сетями и сетевыми элементами

26.1. Архитектура систем управления сетями и сетевыми элементами

26.2. Системы управления первичными и вторичными сетями

26.3. Принципы построения системы управления

Глава 27. Решения компании strom telecom в области tmn (Foris oss)

27.1. Общая характеристика семейства продуктов Foris oss

27.2. Автоматизация расчетов. Подсистема TelBill

27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс

27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge

27.5. Подсистемы TelRes, TelTe, TelRc

27.6. Система «Электронный замок»

27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)

27.8. Подсистема Контакт-центр

10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла

10.3.1 Модель коммутационного узла

Как уже отмечалось, при использовании способа КК сеть должна предоставить физический канал (электрическую цепь) от источника к получателю на время сеанса связи. Эта физическая цепь «из конца в конец» может состоять из нескольких звеньев передачи (каналов), которые соединяются друг с другом в УК с помощью коммутационных полей. Звенья передачи могут быть представлены каналами одного из двух типов - КТЧ аналоговых СП или каналами ЦСП с временным разделением каналов. Большинство пользователей сетей с коммута-цией каналов обслуживаются с блокировками вызовов. Под блокиров­кой вызова понимают отказ в предоставлении канала из конца в ко­нец. Доля блокировок определяет качество сети с КК. Объем ресур-сов сети и эффективность их использования зависят от допустимой доли блокировок. Характеристики обслуживания вызовов описывают­ся с помощью вероятности блокировки, времени установления и разъединения соединения. Для сети с КК установлены протоколы со­единения и разъединения. Под протоколом соединения (разъедине­ния) понимают: а) состав (перечень) сигналов, которыми обменива­ются абонентская установка с сетью и станции и узлы сети друг с дру-гом, б) логику обмена сигналами, в) способ сигнализации (от звена к звену или из конца в конец), г) параметры сигналов (длительности, уровни и др.). Как показано в п. 10.1, при предоставлении обычных услуг телефонной связи требуется передавать десять видов сигна­лов. Для уяснения принципов коммутации в сетях с КК рассмотрим общую модель УК (рис. 10.6).

Рис. 10.6. Общая модель узла коммутации

Приведенная на рис. 10.6 модель описывает большое разнообра­зие систем коммутации (СК). Под СК понимают совокупность средств коммутации и управления, обеспечивающих установление физиче­ских соединений входящих линий (каналов) с исходящими. Так, на­пример, М-входами могут быть абонентские линии, а N-выходами -исходящие каналы оконечной станции к одной из станций сети; на узле или на транзитной станции М-входами могут быть входящие ка­налы (линии) от одной из станций сети, а N-выходами - исходящие каналы к другой станции сети.


Рассмотрим приведенную выше модель. Любой из М-входов может быть либо свободен в течение интервала времени, распределенного по экспоненциальному (показательному) закону с средним значением 1/λ либо генерировать вызов. Этот вызов может быть обслужен в те­чение случайного интервала времени, который распределен по экспо­ненциальному закону со средним значением 1/μ,. Вызов, поступивший на любой вход, занимает любой свободный выход (такая полная дос­тупность всех выходов пучка характерна для узлов и станций с про­граммным управлением). Если все выходы направления связи заняты, то вызов блокируется (СК отказывает ему в обслуживании) и уходит из системы массового обслуживания (СМО). Любая СК является СМО, так как предоставляет общие ресурсы (обычно ограниченные) большой массе пользователей. Если в СМО, показанной на рис. 10.6, установ­лено п соединений, то она перейдет в стационарный, установившийся режим [1]. Вероятностные характеристики этого режима не будут зави­сеть от времени. Именно этот режим работы СК интересует нас, по­скольку расчеты требуемого количества каналов М выполняются для часа наибольшей нагрузки (ЧНН), когда уже установлено большое ко­личество соединений. В этом режиме на входы СМО поступают вызовы с интенсивностью λn и уходят из системы с интенсивностью μn. Систе­му, находящуюся в состоянии n, описывают двумя переменными:

(10.1)

Стационарный режим СМО описывается уравнением равновесия (10.2). В нем устанавливается вероятностная зависимость перехода в состояние n + 1 от интенсивности поступления вызовов λn в состоя­нии n и от вероятности наличия в модели n установленных соедине­ний для любого n ≥ 0:

μn+1pn+1 = λnpn, n ≥ 0,

где pn, pn+1 - вероятность существования в СМО n или n + 1 установ-ленных соединений соответственно.

Вероятности состояний СМО описываются закономерностями, па-раметры которых существенно зависят от соотношения между М и N. Так, например, для часто встречающегося в практике случая, когда М >> N (N конечно) и М очень велико, поступление вызовов на входы описывается распределением (законом) Эрланга. Этот закон описы-вает поведение некоторой случайной величины X (для рассматри-ваеой СМО - это появление вызовов на входах). Положения этого закона таковы:


1) если вызовы расположить на оси времени t (точки на рис. 10.7), то вероятность попадания того или иного числа вызовов на отрезок L зависит только от длины этого отрезка, а не от положения отрезка на оси времени. Последнее указывает на то, что вызовы распределены во нремени с одинаковой средней плотностью (λ), которая характери-зует среднее количество вызовов в единицу времени;

2) вызовы распределяются во времени независимо друг от друга. Это значит, что вероятность попадания заданного числа вызовов на выбранный отрезок времени не зависит от того, сколько вызовов по­пало на любой другой отрезок, не перекрывающийся с ним;

3) вероятность попадания двух или более вызовов на малый уча­сток Δt пренебрежимо мала по сравнению с вероятностью попадания одного вызова (это эквивалентно невозможности одновременного появления двух вызовов).

Для модели СМО с такими свойствами потока вызовов вероят­ность блокировки (отказа в обслуживании вызова из-за занятости всех /V-выходов) описывается распределением Эрланга:

где Y = λ/μ, EN(Y) - вероятность занятости (блокировки) всех N-выходов при нагрузке г от люоого из M-источников. Строго говоря, это выражение верно при М = ∞. Использование его при инженерных расчетах схем с большим количеством входов дает небольшую погрешность .

Рис. 10.7. Моменты поступления потока вызовов Эрланга

Нагрузка Y, создаваемая одним источником вызовов, численно равна произведению интенсивности вызовов λ на длительность об­служивания (1/μ). Блокировку еще называют потерей вызова (вызов уходит из СМО, теряется), долей потерянных вызовов на практике оценивают качество обслуживания систем с блокировками.


10.3.2. Структура коммутационных полей станций и узлов

Пространственная коммутация. На любой станции (узле) сети с КК необходимо коммутировать (соединять) входящие линии или ка­налы СП с исходящими линиями (каналами). Совокупность элемен­тов, обеспечивающих коммутацию, назовем коммутационным полем (КП). Исторически первыми стали применять пространственные КП. В них коммутируемые цепи разделены в пространстве. Такие КП при­менялись на всех электромеханических автоматических телефонных (АТС) и телеграфных станциях и узлах. На станциях с программным управлением применяют КП, в которых используется как пространст­венное, так и временное разделение цепей (каналов). Простейшим коммутационным устройством КП является коммутатор. Коммутатор (рис. 10.8) - это коммутационная схема с n входами и m выходами. В точке пересечения входа с выходом может быть установлен комму­тационный элемент (КЭ) - металлический контакт или полупроводни­ковой переключатель. Если в квадратном коммутаторе n x n на пере­сечении всех входов с выходами установлены КЭ, то в нем всегда можно установить соединение заданного входа с любым свободным выходом. Коммутатор с таким свойством является неблокирующим, т.е. все его выходы доступны любому входу и даже при занятости n - 1 выходов последний свободный выход доступен входу. Если n > m, то в коммутаторе возникают блокировки.

Рис. 10.8. Схема коммутатора n x m и его символическое изображение

Рис. 10.9. Трехступенная (трехзвенная) коммутационная схема

Если к входам и выходам одного квадратного коммутатора N x N подключить абонентские линии одной АТС, то количество необходи­мых КЭ Q = N2 - N(N - 1), так как КЭ по диагонали слева направо не нужны. Если число абонентских линий 8000, то количество КЭ в КП с од­ним коммутатором должно быть не менее 8 x 103(8 x 103 - 1) = 64 x 106. Стоимость такого КП будет неприемлемо велика. Можно ли построить КП с существенно меньшим количеством КЭ при заданном количестве абонентов станции и с малыми (приемлемыми) потерями? Такой спо-соб существует. Он состоит в использовании многозвеньевых струк-тур, в которых коммутаторы соединены каскадно. Схема такого КП показана на рис. 10.9. В отечественной литературе она называется многоступенной, а чаще многозвенной.


Каждая ступень коммутации связана с совокупностью соедини­тельных путей (звеньев). Общее число КЭ в этой схеме существенно меньше, чем в схеме квадратного коммутатора с N-входами и N-­выходами:

Q = 2nm(N/n) + m(N/n)2 = 2Nm + m(N/n)2. (10.4)

Сравним выигрыш при использовании трехзвенной схемы по сравне­нию со схемой квадратного коммутатора N х N. Если N = 8000, n = 32, m = 16, тогда количество КЭ будет равно:

Q = 2 x 8000 x 16 + 16(8000/32)2 = 256 x 103 + 16 x 62.5 x 103 = 318 x 103.

Как видим, использование трехзвенной схемы с n = 32 и т = 16 по-зволяет уменьшить количество КЭ не менее чем в 200 раз.

Коммутационные поля современных ЦСК относятся к КП блоки-рующего типа, однако в них число звеньев и параметры коммутаторов выбирают такими, чтобы вероятность блокировки была очень мала (не больше 0,1 %).

Рис. 10.10. Формат цикла ЦСП с ИКМ и схематичное изображение временного разделения каналов

Трехзвенная схема может быть и неблокирующей, если будет вы­полнено условие: т – 2n - 1. Использование неблокирующих схем в ЦСК большого объема неэффективно, так как требует значительно большего количества КЭ, чем в блокирующих, при прочих равных ус­ловиях.

Временная коммутация. Как уже говорилось, в КП с пространст­венной коммутацией устанавливаются соединения линий (трактов), разделенных электрически (пространственно). Коммутаторы с про­странственной коммутацией используются как в электромеханиче­ских, так и в цифровых УК. Однако в цифровых УК применяется еще и временная коммутация, т.е. схемы с временном разделением кана­лов. Временное разделение может реализоваться, например, с по­мощью импульсно-кодовой модуляции. В ТФ-ОП России, как и в сетях Европы, используются тридцатиканальные ЦСП с ИКМ. В групповом тракте одного направления передачи (например, в двухпроводной кабельной физической линии) такой ЦСП организуется 30 разделен­ных во времени каналов (ВК) для передачи речевой информации или данных и 2 специальных канала. Схематично такое разделение 30 каналов, предоставляемых пользова­телям, показано на рис. 10.10. Комму­тационные поля цисрровых станций и узлов строятся с использованием про­странственно-временной коммутации. Последняя подобна пространственной. Подобие это состоит в следующем. Пусть для каждого ВК существует ячейка памяти, где код данных хранит­ся в течение цикла. На рис. 10.11 ячейки, закрепленные за одной линией ИКМ, показаны вертикальными линия­ми. Пусть также имеются промежуточ­ные линии (на рис. 10.11 это горизон­тальные линии), по которым содержимое любой ячейки может быть прочитано в любом нужном временном положении. Процесс такого считывания и называется временной ком-мутацией. Пример КП с пространственно-временной коммутацией по­казан на рис. 10.12. В ней на первой и третьей ступенях используется временная, а на второй - пространственная коммутация.