ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2024
Просмотров: 213
Скачиваний: 0
СОДЕРЖАНИЕ
Часть I. Способы передачи сообщений
1.1 Спектры периодических сигналов
1.2. Спектры непериодических сигналов
1.3. Сигналы электросвязи и их спектры
2.1. Принципы передачи сигналов электросвязи
3.1. Понятие о цифровых сигналах
3.2. Дискретизация аналоговых сигналов
3.3. Квантование и кодирование
3.4. Восстановление аналоговых сигналов
Глава 4. Принципы многоканальной передачи
4.1. Одновременная передача сообщений
4.2. Частотное разделение каналов
4.3. Временное разделение каналов
Глава 5. Цифровые системы передачи
5.1. Формирование группового сигнала
6.3. Регенерация цифровых сигналов
5.4. Помехоустойчивое кодирование
6.1. Плезиохронная цифровая иерархия
6.2. Синхронная цифровая иерархия
7.3. Волоконно-оптические кабельные линии
8.1. Предпосылки создания транспортных сетей
8.2. Системы передачи для транспортной сети
Vc низшего порядка (Low order vc, lovc)
Vc высшего порядка (High order vc, hovc)
8.3. Модели транспортных сетей
8.4. Элементы транспортной сети
8.5. Архитектура транспортных сетей
Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи
Глава 9. Основные понятия и определения
9.1. Информация, сообщения, сигналы
9.2. Системы и сети электросвязи
9.3. Эталонная модель взаимосвязи открытых систем
9.4. Методы коммутации в сетях электросвязи
9.5 Методы маршрутизации в сетях электросвязи
Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации
10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи
10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла
10.3.1 Модель коммутационного узла
10.3.2. Структура коммутационных полей станций и узлов
10.3.3. Элементы теории телетрафика
11.2. Направления развития телеграфной связи
Глава 12. Службы пд. Защита от ошибок и преобразование сигналов
12.2. Сигналы и виды модуляции, используемые в современных модемах
13.1. Компьютеры — архитектура и возможности
13.2. Принципы построения компьютерных сетей
13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
13.4. Сетевые операционные системы
13.5. Локальные компьютерные сети
13.6. Глобальные компьютерные сети
13.7. Телефонная связь по компьютерным сетям
14.1. Основы факсимильной связи
14.2. Организация факсимильной связи
Глава 15. Другие службы документальной электросвязи
Глава 16. Единая система документальной электросвязи
16.1. Интеграция услуг документальной электросвязи [1]
16.2. Назначение и основные принципы построения служб обработки сообщений [2]
16.3. Многофункциональные терминалы
Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах
17.2. Правовые и организационные аспекты информационной безопасности
17.3. Технические аспекты информационной безопасности
Часть III. Интеграция сетей и служб электросвязи
Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)
18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания
18.2. Службы и услуги узкополосной цсио
18.3. Система управления у-цсио
Глава 19. Широкополосные и интеллектуальные сети
19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)
19.3. Способы коммутации в ш-цсио
19.4. Построение коммутационных полей станций ш-цсио
19.5. Причины и условия перехода к интеллектуальной сети (ис)
Глава 20. Система межстанционной сигнализации по общему каналу в цсио
20.1. Понятие об общем канале сигнализации
20.2. Протоколы системы сигнализации № 7 itu-t
20.3. Способы защиты от ошибок в окс № 7
20.5. Способы построения сигнальной сети
Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»
21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet
21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»
21.3. Цифровая коммутационная система с программным управлением с&с08
21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750
Часть IV. Современные методы управления в телекоммуникациях
22.1. Многоуровневое представление задач управления телекоммуникациями
22.2. Функциональные группы задач управления
Глава 23. Интегрированные информационные системы управления предприятиями электросвязи
23.1. Понятия и определения в области информационных систем управления предприятием
Глава 24. Управление услугами. Качество предоставляемых услуг
24.1. Система качества услуг электросвязи
24.2. Базовые составляющие обеспечения качества услуги
24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи
Глава 25. Управление услугами.
25.3. Централизованный способ построения системы расчетов
25.4. Интеграция аср с системами управления tmn
25.5. Основные технические требования для аср
25.6. Обзор автоматизированных систем расчетов
Глава 26. Управление сетями и сетевыми элементами
26.1. Архитектура систем управления сетями и сетевыми элементами
26.2. Системы управления первичными и вторичными сетями
26.3. Принципы построения системы управления
Глава 27. Решения компании strom telecom в области tmn (Foris oss)
27.1. Общая характеристика семейства продуктов Foris oss
27.2. Автоматизация расчетов. Подсистема TelBill
27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс
27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge
27.5. Подсистемы TelRes, TelTe, TelRc
27.6. Система «Электронный замок»
27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)
Рис. 10.12. Схема трехзвенного КП типа В-П-В
Тип коммутации, используемый в схеме рис. 10.12, называют «время-пространство-время» (В-П-В). Как и в схеме рис. 10.9, здесь числo входящих и исходящих каналов равно N. Эти каналы представ-лены в N/n входящих и исходящих линиях ИКМ. Работа такой комму-тационной схемы аналогична работе трехзвенной пространственной коммутационной схемы рис. 10.9. В пространственных коммутаторах 2-й ступени устанавливаются соединения временных каналов исходящих и входящих линий ИКМ.
Это значит, что КЭ, разделенные в пространстве и установленные на пересечении вертикали с горизонталью, должны открывать-ся в выбранном свободном временном положении коммутации. Свободное временное положение коммутации выбирается управ-ляющим устройством, оно же обеспечивает считыванием кода данных из требуемой ячейки (например, 2-й) информационной памяти входящей линии ИКМ (например, 1-й) в ячейку (например, л) информационной памяти некоторой исходящей линии ИКМ (напри-мер, N/n-й).
10.3.3. Элементы теории телетрафика
Вычисление трафика. Теория телетрафика - раздел теории массового обслуживания. Основы теории телетрафика заложил датский ученый А.К. Эрланг. Его работы были опубликованы в 1909-1928 гг. Дадим важные определения, используемые в теории телетрафика (ТТ). Термин «трафик» (от англ, traffic) соответствует термину «телефонная нагрузка». Подразумевается нагрузка, создаваемая потоком вызовов, требований, сообщений, поступающих на входы СМО. Трафик измеряется в часо-занятиях (ч-з) или в эрлангах (Эрл). Трафик, создаваемый одним источником и выраженный в часо-занятиях, равен произведению числа попыток вызовов с за определенный интервал времени Т на среднюю длительность одной попытки t: у = с x t (ч-з).
Трафик величиной в 1 Эрл равен 1 ч-з в час (ч-з/ч). Отметим, что попытка вызова может не закончиться занятием канала (линии) в требуемом направлении связи, однако любая попытка создает нагрузку на СМО. Трафик Y, выраженный в Эрлангах, равен среднему числу одновременных занятий в течение одного часа. Трафик можно вычислить тремя разными способами:
1) пусть число вызовов с в течение часа равно 1800, а средняя длительность занятия t = 3 мин, тогда
Y = 1800 выз./ч x 0,05 ч = 90 Эрл;
2) пусть в течение времени Т фиксируются длительности ti всех п занятий выходов некоторого пучка, тогда трафик определяют так:
3) пусть в течение времени Г выполняется наблюдение через равные промежутки времени Д? за количеством одновременно занятых выходов некоторого пучка, по результатам наблюдений строят (рис. 10.13) ступенчатую функцию времени x(t).
Рис. 10.13. Отсчеты одновременно занятых выходов пучка
Трафик в течение времени Т может быть оценен как среднее зна-чение х(t) за это время:
где n - число отсчетов одновременно занятых выходов. Величина Y есть среднее количество одновременно занятых выходов пучка в течение времени Т.
Колебания трафика. Трафик вторичных телефонных сетей существенно колеблется во времени. В течение рабочего дня кривая трафика имеет два или даже три пика (рис. 10.14). Час суток, в течение которого трафик, наблюдаемый длительное время, имеет наибольшее значение, называют часом наибольшей нагрузки (ЧНН). знание трафика в ЧНН принципиально важно, так как им определяется количество каналов (линий), объем оборудования станций и узлов. Трафик одного и того же дня недели имеет сезонные колебания. Если день недели является предпраздничным, то ЧНН этого дня выше, чем и день после праздника. Если количество служб, поддерживаемых сетью, растет, то и трафик растет. Поэтому проблематично предска-зывать с достаточной уверенностью возникновение пиков трафика. Трафик внимательно отслеживается администрацией сетей и проектными организациями. Правила измерения трафика разработаны МСЭ-Т [4] и используются администрациями национальных сетей для того, чтобы удовлетворить требованиям качества предоставляемых услуг как для абонентов своей сети, так и для абонентов других сетей, связанных с ней. Теорию телетрафика можно ис-пользовать для практических расчетов потерь или объема оборудования станции (узла) только в том случае, если трафик стацио-нарный (статистически установившийся). Этому условию прибли-женно удовлетворяет трафик в ЧНН.
Процесс создания трафика. Как известно каждому пользователю телефонной сети, не все попытки установления соединения с вызы-ваемым абонентом заканчиваются успешно. Иногда приходится де лать несколько неудачных попыток, прежде чем будет установлено желаемое соединение.
Рис. 10.14. Колебания трафика в течение суток
Рис. 10.15. Диаграмма событий при установлении соединения между абонентами А и Б
Рассмотрим возможные события при установлении соединения между абонентами А и Б (рис. 10.15). Статистические данные о вызовах в телефонных сетях таковы: доля состоявшихся разговоров составляет 70-50 %, доля несостоявшихся - 30-50 %. Любая попытка абонента занимает вход СМО. При удачных попытках (когда разговор состоялся) время занятия коммутационных приборов, устанавливающих соединения входов с выходами, больше чем при неудачных. Абонент может в любой момент времени прервать попытки установления соединения. Повторные попытки могут быть вызваны следующими причинами:
- номер набран неправильно,
- предположение об ошибке в работе сети,
- степень срочности разговора,
- неудачные предыдущие попытки,
- знание привычек абонента Б,
- сомнение в правильности набора номера.
Повторная попытка может быть предпринята в зависимости от следующих обстоятельств:
- степени срочности,
- оценки причины неуспеха,
- оценки целесообразности повторения попыток,
- оценки приемлемого интервала между попытками.
Отказ от повторной попытки может быть связан с низкой степенью срочности. Различают несколько видов трафика, создаваемого вызовами: поступающий (предложенный) Yп и пропущенный Yпр. Трафик Yп включает все успешные и неуспешные попытки, трафик Упр, являющийся частью Yп, включает успешные и часть неуспешных попыток:
Yпр = Yр + Yнп,
где Yр - разговорный (полезный) трафик, а Yнп - трафик, созданный неудачными попытками. Равенство Yп = Yр возможно лишь в том иде-альном случае, если нет потерь, ошибок вызывающих абонентов и неответов вызываемых абонентов.
Прогнозирование трафика. Ограниченность ресурсов привода к необходимости поэтапного расширения станции и сети. Администрация сети делает прогноз увеличения трафика в течение этапа развития, учитывая, что [5]:
- доход определяется частью пропущенного трафика Yр, - затраты определяются качеством обслуживания при наибольшем трафике,
- большая доля потерь (низкое качество) бывает в редких случаях и характерна для конца периода развития,
- наибольший объем пропущенного трафика приходится на пе-риоды, когда потери практически отсутствуют, - если потери меньше 10 %, то абоненты на них не реагируют. При планировании развития станций и сети проектировщик должен ответить на вопрос, каковы требования к качеству предоставления услуг (к потерям). Для этого нужно проводить измерения трафика потерь по принятым в стране правилам.
Контрольные вопросы
-
Подвергаются ли обработке сообщения пользователей в телефонных сетях?
-
Каким показателем оценивается качество предоставления сетевых ресурсов в телефонных сетях?
-
Назовите виды сигналов, передаваемых между пользовательской установкой и сетью или между станциями телефонной сети.
-
Назовите отличия централизованной сигнализации от децентрализован-ной
-
Поясните процесс обработки вызова на станции телефонной сети при yспешном соединении.
-
Охарактеризуйте место ТФ-ОП РФ в международном телекоммуникационном пространстве. 7. Охарактеризуйте службы сервиса Министерства связи РФ.
-
Приведите примеры ДВО, предоставляемых службами станции или теле-фонной сети.
-
Охарактеризуйте возможные способы связи станций вторичных телефонных сетей.
-
Каковы возможные стратегии перехода от аналоговых вторичных телефонных сетей к цифровым?
-
Каковы основные отличия цифровой сети от аналоговой?
-
Каково назначение сигнальной подсети в составе цифровой?
-
Охарактеризуйте открытую систему нумерации, используемую на междугородной телефонной сети РФ.
-
Каковы характеристики обслуживания вызовов на УК с коммутацией каналов?
-
Что понимают под протоколом соединения в телефонной сети?
-
Изобразите общую модель УК телефонной сети.
-
Охарактеризуйте поток вызовов, описываемый законом Пуассона.
-
Запишите выражение для трафика, создаваемого одним источником вызовов.
-
Дайте определение ЧНН.
-
Каковы требования к доле состоявшихся разговоров в телефонной сети?
-
Каковы причины повторных попыток вызовов?
-
Какая величина потерь (блокировок) не замечается абонентами?
-
Приведите пример трехзвенной коммутационной схемы.
-
Каково преимущество многозвенных (многоступенных) коммутационных схем по сравнению с однозвенными?
-
Постройте трехзвенную коммутационную схему типа В-П-В.
Список литературы
1. Вентцель Е.С. Теория вероятностей. - М.: Наука, 1964. - 576 с.
2. Концепция развития связи Российской Федерации / Под ред. В.Б. Булгака, Л.Е. Варакина. - М.: Радио и связь, 1995. - 224 с.
3. Мизин И.А. О концепции создания Российской общегосударственной и региональных интегрированных сетей передачи информации // Электросвязь. - 1997. -№12.-С. 2-9.
4. МККТТ. Синяя книга. Телефонная служба и ЦСИС. Качество обслуживания, управление сетью и расчет нагрузки. Рекомендации Е.401 - Е.880. IX Пленарная ассамблея. - Мельбурн, 1988. -Т. II. - Вып. Н.Э.
5. Эллдин А., Линд Г. Основы теории телетрафика. - М.: Связь, 1972. - 199 с.