ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2024
Просмотров: 183
Скачиваний: 0
СОДЕРЖАНИЕ
Часть I. Способы передачи сообщений
1.1 Спектры периодических сигналов
1.2. Спектры непериодических сигналов
1.3. Сигналы электросвязи и их спектры
2.1. Принципы передачи сигналов электросвязи
3.1. Понятие о цифровых сигналах
3.2. Дискретизация аналоговых сигналов
3.3. Квантование и кодирование
3.4. Восстановление аналоговых сигналов
Глава 4. Принципы многоканальной передачи
4.1. Одновременная передача сообщений
4.2. Частотное разделение каналов
4.3. Временное разделение каналов
Глава 5. Цифровые системы передачи
5.1. Формирование группового сигнала
6.3. Регенерация цифровых сигналов
5.4. Помехоустойчивое кодирование
6.1. Плезиохронная цифровая иерархия
6.2. Синхронная цифровая иерархия
7.3. Волоконно-оптические кабельные линии
8.1. Предпосылки создания транспортных сетей
8.2. Системы передачи для транспортной сети
Vc низшего порядка (Low order vc, lovc)
Vc высшего порядка (High order vc, hovc)
8.3. Модели транспортных сетей
8.4. Элементы транспортной сети
8.5. Архитектура транспортных сетей
Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи
Глава 9. Основные понятия и определения
9.1. Информация, сообщения, сигналы
9.2. Системы и сети электросвязи
9.3. Эталонная модель взаимосвязи открытых систем
9.4. Методы коммутации в сетях электросвязи
9.5 Методы маршрутизации в сетях электросвязи
Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации
10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи
10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла
10.3.1 Модель коммутационного узла
10.3.2. Структура коммутационных полей станций и узлов
10.3.3. Элементы теории телетрафика
11.2. Направления развития телеграфной связи
Глава 12. Службы пд. Защита от ошибок и преобразование сигналов
12.2. Сигналы и виды модуляции, используемые в современных модемах
13.1. Компьютеры — архитектура и возможности
13.2. Принципы построения компьютерных сетей
13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
13.4. Сетевые операционные системы
13.5. Локальные компьютерные сети
13.6. Глобальные компьютерные сети
13.7. Телефонная связь по компьютерным сетям
14.1. Основы факсимильной связи
14.2. Организация факсимильной связи
Глава 15. Другие службы документальной электросвязи
Глава 16. Единая система документальной электросвязи
16.1. Интеграция услуг документальной электросвязи [1]
16.2. Назначение и основные принципы построения служб обработки сообщений [2]
16.3. Многофункциональные терминалы
Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах
17.2. Правовые и организационные аспекты информационной безопасности
17.3. Технические аспекты информационной безопасности
Часть III. Интеграция сетей и служб электросвязи
Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)
18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания
18.2. Службы и услуги узкополосной цсио
18.3. Система управления у-цсио
Глава 19. Широкополосные и интеллектуальные сети
19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)
19.3. Способы коммутации в ш-цсио
19.4. Построение коммутационных полей станций ш-цсио
19.5. Причины и условия перехода к интеллектуальной сети (ис)
Глава 20. Система межстанционной сигнализации по общему каналу в цсио
20.1. Понятие об общем канале сигнализации
20.2. Протоколы системы сигнализации № 7 itu-t
20.3. Способы защиты от ошибок в окс № 7
20.5. Способы построения сигнальной сети
Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»
21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet
21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»
21.3. Цифровая коммутационная система с программным управлением с&с08
21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750
Часть IV. Современные методы управления в телекоммуникациях
22.1. Многоуровневое представление задач управления телекоммуникациями
22.2. Функциональные группы задач управления
Глава 23. Интегрированные информационные системы управления предприятиями электросвязи
23.1. Понятия и определения в области информационных систем управления предприятием
Глава 24. Управление услугами. Качество предоставляемых услуг
24.1. Система качества услуг электросвязи
24.2. Базовые составляющие обеспечения качества услуги
24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи
Глава 25. Управление услугами.
25.3. Централизованный способ построения системы расчетов
25.4. Интеграция аср с системами управления tmn
25.5. Основные технические требования для аср
25.6. Обзор автоматизированных систем расчетов
Глава 26. Управление сетями и сетевыми элементами
26.1. Архитектура систем управления сетями и сетевыми элементами
26.2. Системы управления первичными и вторичными сетями
26.3. Принципы построения системы управления
Глава 27. Решения компании strom telecom в области tmn (Foris oss)
27.1. Общая характеристика семейства продуктов Foris oss
27.2. Автоматизация расчетов. Подсистема TelBill
27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс
27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge
27.5. Подсистемы TelRes, TelTe, TelRc
27.6. Система «Электронный замок»
27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)
Что ждет нас в конце нынешнего - начале будущего столетия? Большинство специалистов сходятся во мнении, что дальнейшая эволюция телекоммуникационных технологий будет идти в направлениях увеличения скорости передачи информации, интеллектуализации сетей и обеспечения мобильности пользователей.
Высокие скорости. Необходимы для передачи изображений, в том числе телевизионных, интеграции различных видов информации в мультимедийных приложениях, организации связи локальных, городских и территориальных сетей.
Интеллектуальность. Позволит увеличить гибкость и надежность сети, сделает более легким управление глобальными сетями. Благодаря интеллектуализации сетей пользователь перестает быть пассивным потребителем услуг, превращаясь в активного клиента - клиента, который сможет сам активно управлять сетью, заказывая необходимые ему услуги.
Мобильность. Успехи в области миниатюризации электронных устройств, снижение их стоимости создают предпосылки к глобальному распространению мобильных оконечных устройств. Это делает реальной задачу предоставления услуг связи каждому в любое время и в любом месте.
В заключение отметим, что объем информации, передаваемой через информационно-телекоммуникационную инфраструктуру мира, удваивается каждые 2-3 года. Появляются и успешно развиваются новые отрасли информационной индустрии, существенно возрастает информационная составляющая экономической активности субъектов рынка и влияние информационных технологий на научно-технический, интеллектуальный потенциал и здоровье наций. Начало XXI века рассматривается как эра информационного общества, требующего для своего эффективного развития создания глобальной информационно-телекоммуникационной инфраструктуры, темпы развития которой должны быть опережающими по отношению к темпам развития экономики в целом. При этом создание российской информационно-телекоммуникационной инфраструктуры следует рассматривать как важнейший фактор подъема национальной экономики, роста деловой и интеллектуальной активности общества, укрепления авторитета страны в международном сообществе.
Список литературы
1. Кох Р., Яновский Г. Эволюция и конвергенция в электросвязи. - М.: Радио и связь, 2001. - 280 с.
2. Концепция развития рынка телекоммуникационных услуг Российской Федерации// СвязьИнформ. - 2001. - № 10. - С. 9-32.
Часть I. Способы передачи сообщений
Глава 1. Спектры
1.1 Спектры периодических сигналов
Все сигналы могут быть подразделены на периодические и непереодические.
Периодическим называется сигнал, значения которого повторяются через определенные равные промежутки времени, называемые периодом повторения сигнала, или просто периодом. Для непериодического сигнала это условие не выполняется.
Простейшим периодическим сигналом является гармоническое колебание.
s(t)=Ssinωt,
где S, ω – амплитуда и угловая частота колебания.
Другим примером периодического сигнала является последовательность прямоугольных импульсов (рис. 1.1, а). Как вы думаете, из чего состоит эта последовательность импульсов? Оказывается, из синусоид. Взгляните на рис. 1.1. В качестве исходной синусоиды выберем такую, у которой период колебаний совпадает с периодом Т прямоугольных импульсов (рис. 1.1, б):
s(t)=S1sinω1t,
где S1 – амплитуда синусоиды, а ω1 = 2π/Т.
Колебание (1.1) заданной частоты ω1 и амплитуды S1 можно представить в виде графика: на оси частот отметить значение ω1 и изобразить вертикальную линию высотой, равной амплитуде сигнала S1 (см. рис. 1.1, б).
Следующая синусоида имеет частоту колебаний в 3 раза большую, а амплитуду – в 3 раза меньшую.
Сумма этих двух синусоид S1sinω1t + (S1/3)sin3ω1t пока еще мало похожа на прямоугольные импульсы (рис. 1.1, в). Но если мы добавим к ним синусоиды с частотами колебаний в 5, 7, 9, 11 и т.д. раз большими, а с амплитудами в 5, 7, 9, 11 и т.д. раз меньшими, то сумма всех этих колебаний:
Рис 1.1. Периодическая последовательность прямоугольных импульсов (а) и формирование ее сигнала (б-д)
где S1 = (4/π)U = 1,27U, будет не так уже сильно отличатся от прямоугольных импульсов (рис. 1.1, г и д). Таким образом, степень «прямоугольности» импульсов определяется тем, сколько синусоид со все более высокими частотами колебаний мы будем суммировать.
Может показаться, что представление прямоугольных импульсов в виде совокупности синусоид есть не более чем математический прием и не имеет никакого отношения к реальности. Однако это не так. Радиоинженерам хорошо знакомы приборы (они называются анализаторами спектров), которые позволяют выделить каждую входящую в сложный сигнал синусоиду.
Рис. 1.2. Последовательность треугольных импульсов (а) и ее спектр (б)
Тот факт, что сигнал произвольной формы (а не только прямоугольные импульсы) можно «разложить» на сумму обыкновенных синусоид, впервые доказал в 20-х годах XIX века французский математик Ж. Фурье. Такой набор синусоид получил название спектра сигнала. Каждый сигнал (отличающийся от других по форме) имеет свой сугубо индивидуальный спектр, т.е. может быть получен только из синусоид со строго определенными частотами и амплитудами.
Так, сигнал треугольной формы (рис. 1.2, а) состоит из следующих синусоид:
и имеет спектр, изображенный на рис. 1.2,б.
Некоторые сигналы представляются в виде суммы не синусоид, а косинусоид:
s(t) = C0 + C1cosω1t + C2cos2ω1t + C3cos3ω1t+…,
где С0 – постоянная составляющая сигнала.
Например, для сигнала, изображенного на рис. 1.3, а, можно записать:
где
Сигнал, предстваленный на рис. 1.3, а можно получить, если гармоническое колебание пропустить через схему с диодом, которая известна под названием «однополупериодный выпрямитель».
Случай двухполупериодного выпрямления гармонического колебания сигнала показан на рис. 1.3, б. Для него можно записать:
где
Рис. 1.3. Сигналы, выпрямленные одно- (а) и двухполупериодным (б) выпрямителями
Многие сигналы состоят, в общем случае, как из синусоид, так и из косинусоид, т.е.
(1.2)
Используем известное тригонометрическое соотношение
Asin(ωt+φ) = Acosφsinωt + Asinφcosωt = Ssinωt + Ccosωt,
Где S = Acosφ и C = Asinφ,и заменим запись (1.2) на следующую:
(1.3)
Выражение (1.3) показывает, что любой периодический сигнал состоит из гармоник. В математике эту формулу называют рядом Фурье.
Если изобразить амплитуду Ak и фазу φk каждой гармоники на рисунке, то получим так называемые спектральные диаграммы сигнала (рис. 1.4, а, б), где линии, соответствующие амплитудам и фазам гармоник, называются спектральными линиями. Распределение амплитуд Ak гармоник по частоте называется спектром амплитуд этого сигнала (см. рис. 1.4, а), а распределение фаз φk - спектром фаз (рис. 1.4, б).
Когда интересуют не значения амплитуд и начальных фаз гармоник сложного колебания, а только их частоты, то следует говорить о спектре частот сигнала.
Так как спектр периодического сигнала состоит из отдельных спектральных линий, его называют дискретным.
Частота первой гармоники сигнала определяется, как показано в (1.1), периодом сигнала: ω1 = 2π/T. Если период сигнала оставить неизменным, а изменять только длительность импульсов (рис. 1.5, а и в), то частота первой гармоники будет той же самой для обоих сигналов. Изменится скорость убывания амплитуд гармоник (рис. 1.5, б и г). Чем короче импульс, тем медленнее убывают амплитуды гармоник и тем соответственно, большим числом гармоник следует представлять прямоугольные импульсы, чтобы сохранить достаточную степень их «прямоугольности».
Существует очень важное понятие - практическая ширина спектра сигнала. Интуитивно ясно, что если полоса пропускания какого-либо устройства недостаточно широкая, чтобы пропустить все гармоники, существенно влияющие на форму сигнала, то сигнал на выходе этого устройства исказится. Таким образом, можно сказать, что ширина полосы пропускания устройства не должна быть уже ширины спектра сигнала.
Что же следует считать шириной спектра сигнала, если число гармоник в сигнале бесконечно? Существует несколько критериев для определения практической ширины спектра сигнала.
Рис. 1.5. Изменение спектра амплитуд (6 и г) при уменьшении длительности импульсов (а и в)
Например, можно отбрасывать все гармоники с амплитудами меньшими 1 % максимальной амплитуды в спектре, тогда частоты оставшихся гармоник и определят ширину спектра сигнала. Можно отбрасывать те гармоники, суммарная энергия которых меньше 10 % общей энергии сигнала. В этом случае ширину спектра также определяют оставшиеся в сигнале гармоники.
Однако независимо от критерия, по которому определяют ширину спектра сигнала, можно выделить такие общие для всех сигналов закономерности: чем круче фронт сигнала, чем короче импульсы и чем больше пауза между импульсами, тем шире во всех этих случаях спектр сигнала, т.е. тем медленнее убывают амплитуды гармоник с ростом их номера.