Файл: Телекоммуникационные системы и сети - КНИГА.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.10.2024

Просмотров: 305

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Часть I. Способы передачи сообщений

Глава 1. Спектры

1.1 Спектры периодических сигналов

1.2. Спектры непериодических сигналов

1.3. Сигналы электросвязи и их спектры

Глава 2. Модуляция

2.1. Принципы передачи сигналов электросвязи

2.2. Амплитудная модуляция

2.3 Угловая модуляция

2.4. Импульсная модуляция

2.5. Демодуляция сигналов

Глава 3. Цифровые сигналы

3.1. Понятие о цифровых сигналах

3.2. Дискретизация аналоговых сигналов

3.3. Квантование и кодирование

3.4. Восстановление аналоговых сигналов

Глава 4. Принципы многоканальной передачи

4.1. Одновременная передача сообщений

4.2. Частотное разделение каналов

4.3. Временное разделение каналов

Глава 5. Цифровые системы передачи

5.1. Формирование группового сигнала

5.2. Синхронизация

6.3. Регенерация цифровых сигналов

5.4. Помехоустойчивое кодирование

Глава 6. Цифровые иерархии

6.1. Плезиохронная цифровая иерархия

6.2. Синхронная цифровая иерархия

Глава 7. Линии передачи

7.1. Медные кабельные линии

7.2. Радиолинии

7.3. Волоконно-оптические кабельные линии

Глава 8. Транспортные сети

8.1. Предпосылки создания транспортных сетей

8.2. Системы передачи для транспортной сети

Vc низшего порядка (Low order vc, lovc)

Vc высшего порядка (High order vc, hovc)

8.3. Модели транспортных сетей

8.4. Элементы транспортной сети

8.5. Архитектура транспортных сетей

Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи

Глава 9. Основные понятия и определения

9.1. Информация, сообщения, сигналы

9.2. Системы и сети электросвязи

9.3. Эталонная модель взаимосвязи открытых систем

9.4. Методы коммутации в сетях электросвязи

9.5 Методы маршрутизации в сетях электросвязи

Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации

Глава 10. Телефонные службы

10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи

10.2. Структура городских телефонных сетей (гтс) с низким уровнем цифровизации и перспективы развития

10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла

10.3.1 Модель коммутационного узла

10.3.2. Структура коммутационных полей станций и узлов

10.3.3. Элементы теории телетрафика

Глава 11. Телеграфные службы

11.1. Сети телеграфной связи

11.2. Направления развития телеграфной связи

Глава 12. Службы пд. Защита от ошибок и преобразование сигналов

12.1. Методы защиты от ошибок

12.2. Сигналы и виды модуляции, используемые в современных модемах

Глава 13. Службы пд. Сети пд.

13.1. Компьютеры — архитектура и возможности

13.2. Принципы построения компьютерных сетей

13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей

13.4. Сетевые операционные системы

13.5. Локальные компьютерные сети

13.6. Глобальные компьютерные сети

13.7. Телефонная связь по компьютерным сетям

Глава 14. Факсимильные службы

14.1. Основы факсимильной связи

14.2. Организация факсимильной связи

Глава 15. Другие службы документальной электросвязи

15.1. Видеотекс

15.2. Голосовая почта

Глава 16. Единая система документальной электросвязи

16.1. Интеграция услуг документальной электросвязи [1]

16.2. Назначение и основные принципы построения служб обработки сообщений [2]

16.3. Многофункциональные терминалы

Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах

17.1. Общие положения

17.2. Правовые и организационные аспекты информационной безопасности

17.3. Технические аспекты информационной безопасности

Часть III. Интеграция сетей и служб электросвязи

Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)

18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания

18.2. Службы и услуги узкополосной цсио

18.3. Система управления у-цсио

Глава 19. Широкополосные и интеллектуальные сети

19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)

19.2. Услуги ш-цсио

19.3. Способы коммутации в ш-цсио

19.4. Построение коммутационных полей станций ш-цсио

19.5. Причины и условия перехода к интеллектуальной сети (ис)

19.6. Услуги ис

Глава 20. Система межстанционной сигнализации по общему каналу в цсио

20.1. Понятие об общем канале сигнализации

20.2. Протоколы системы сигнализации № 7 itu-t

20.3. Способы защиты от ошибок в окс № 7

20.4. Характеристики окс

20.5. Способы построения сигнальной сети

Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»

21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet

21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»

21.3. Цифровая коммутационная система с программным управлением с&с08

21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750

Часть IV. Современные методы управления в телекоммуникациях

Глава 22. Общие положения

22.1. Многоуровневое представление задач управления телекоммуникациями

22.2. Функциональные группы задач управления

Глава 23. Интегрированные информационные системы управления предприятиями электросвязи

23.1. Понятия и определения в области информационных систем управления предприятием

23.2. Анализ структуры интегрированной информационной системы управления предприятием регионального оператора связи

23.3. Новое системное проектирование как передовая технология на этапе внедрения современных информационных систем

23.4. Требования к функциональности интегрированной информационной системы управления предприятием для регионального оператора связи

23.5. Требования к используемым информационным технологиям, техническим средствам и программному обеспечению

Глава 24. Управление услугами. Качество предоставляемых услуг

24.1. Система качества услуг электросвязи

24.2. Базовые составляющие обеспечения качества услуги

24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи

Глава 25. Управление услугами.

25.1. Общие положения

25.2. Классификация аср

25.3. Централизованный способ построения системы расчетов

25.4. Интеграция аср с системами управления tmn

25.5. Основные технические требования для аср

25.6. Обзор автоматизированных систем расчетов

25.7. Заключение

Глава 26. Управление сетями и сетевыми элементами

26.1. Архитектура систем управления сетями и сетевыми элементами

26.2. Системы управления первичными и вторичными сетями

26.3. Принципы построения системы управления

Глава 27. Решения компании strom telecom в области tmn (Foris oss)

27.1. Общая характеристика семейства продуктов Foris oss

27.2. Автоматизация расчетов. Подсистема TelBill

27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс

27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge

27.5. Подсистемы TelRes, TelTe, TelRc

27.6. Система «Электронный замок»

27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)

27.8. Подсистема Контакт-центр

Если местные «часы» системы передачи (тактовые импульсы) подводятся и в ту, и в другую сторону, то одной команды: «Внимание! Произошло согласование скоростей» будет мало. Нужно еще сообщить на приемную станцию, какое согласование произошло: положи-тельное или отрицательное, вставлен ложный импульс или исключен информационный. Для этой цели вводят команду «Вид согласования посылая по другому служебному каналу 1 при положительном согласовании и 0 при отрицательном. Для надежности ее также по-вторяют 3 раза. Комбинация 111 во втором служебном канале (орга-низованном также за счет части «пустых» интервалов) будет воспринята как сигнал о том, что в цифровой поток вставлен ложный им-пульс как комбинация 000 - что из потока «вырезан» информационный бит устройства распознания команд выполнены таким образом, что они сработают даже в том случае, когда в командах «выживут» всего по одному биту, а остальные «погибнут» в борьбе с помехами.

Так что же, исключенный на передаче информационный бит пропадет совсем? Нет. Его посылают вдогонку по третьему служебному каналу, причем для верности тоже повторяют 3 раза. Итак, приемник цифровой системы передачи по первой команде (комбинация 111) что, что произошло согласование, по второй команде поймет, что нужно или ликвидировать ложный импульс (комбинация 000), или восстановить пропущенный информационный (комбинация ,а по информации, взятой из третьего служебного канала, определит, какой бит пропущен - 1 (комбинация 111) или 0 (комбинация-000).

Объединение потоков с выравниванием скоростей получило на-звание плезиохронного (почти синхронного), а существующая иерархия скоростей передачи цифровых потоков, а, значит, и систем пере-дачи типа ИКМ - плезиохронной цифровой иерархией (в англоязыч-

ном написании Plesiohronous Digital Hierarhy - PDH).

Плезиохронная цифровая иерархия была разработана в начале 90-х годов прошлого столетия. На системы передачи данной иерархии возлагались большие надежды. Однако она оказалась очень негибкой чтобы вводить в цифровой поток высокоскоростной или выводить из него низкоскоростные потоки, необходимо полностью «расшивать», а затем снова «сшивать» высокоскоростной поток. Это требует установки большого числа мультиплексоров и демультиплексоров. Ясно, что делать эту операцию часто весьма дорого. На рис. 6.6 показана операция выделения потока со скоростью 2 Мбит/с из PDH потока со скоростью 140 Мбит/с.


В этом случае пришлось один поток со скоростью 140 Мбит/с демультиплексировать в четыре потока со скоростями 34 Мбит/с; затем один поток в 34 Мбит/с - в четыре потока 8 Мбит/с и только после это-го расшить» один поток 8 Мбит/с на четыре потока со скоростями 2 Мбит/с.

Рис. 6.6. Выделение сигнала со скоростью 2 Мбит/с из плезиохронного цифрового потока 140 Мбит/с

Только таким сложным путем можно вывести или ввести поток пользователя в PDH-системах передачи.

Недостатком систем передачи плезиохронной цифровой иерархии является также то, что при нарушении синхронизации группового сиг нала восстановление синхронизации первичных цифровых потоков происходит многоступенчатым путем, а это занимает довольно много времени. В настоящее время среди систем передачи PDH «выживают» только системы первого уровня иерархии, снабженные новой ап паратурой так называемого гибкого мультиплексирования, которая обеспечивает кроссовые соединения каналов 64 кбит/с; выделение и ввод отдельных каналов 64 кбит/с в любом наборе; пользовательские интерфейсы от двухпроводных окончаний для телефона до оконча­ний базового доступа в цифровую сеть с интеграцией услуг; видео-конференцсвязь и многое другое. Можно сказать, что гибкие мульти­плексоры немного продлили жизнь PDH систем.

Но самое главное, что заставило уже в середине 80-х годов XX в. искать новые подходы к построению цифровых иерархий систем пе­редачи, это почти полное отсутствие возможностей автоматически контролировать состояние сети связи и управлять ею. А без этого создать надежную сеть связи с высоким качеством обслуживания практически невозможно. Все эти факторы и побудили разработать еще одну цифровую иерархию.


6.2. Синхронная цифровая иерархия

Синхронные транспортные модули. Новая цифровая иерархия была задумана как скоростная информационная автострада для транспортирования цифровых потоков с разными скоростями. В этой иерархии объединяются и разъединяются потоки со скоростями 155,520 Мбит/с и выше. Поскольку способ объединения потоков был выбран синхронный, то данная иерархия получила название синхрон-ной цифровой иерархии (Synchronous Digital Hierarchy-SDH). Для транспортирования цифрового потока со скоростью 155 Мбит/с создается синхронный транспортный модуль (Synchronous Trasport Module) STM-1. Его упрощенная структура дана на рис. 6.7.

Рис. 6.7. Структура синхронного транспортного модуля STM-1

Модуль представляет собой фрейм (рамку) 9 x 270 = 2430 байт. Кроме передаваемой информации (называемой в литературе полезной на-грузкой), он содержит в 4-й строке указатель (Pointer, PTR), опреде-ляющий начало записи полезной нагрузки.

Чтобы определить маршрут транспортного модуля, в левой части рамки записывается секционный заголовок (Section Over Head -SОН). Нижние 5 x 9 = 45 байтов (после указателя) отвечают за достав-ку информации в то место сети, к тому мультиплексору, где этот транспортный модуль будет переформировываться. Данная часть заголовка так и называется: секционный заголовок мультиплексора MSОН). Верхние 3 x 9 = 27 байтов (до указателя) представляют собой секционный заголовок регенератора (RSOH), где будут осуществ-ляться восстановление потока, «поврежденного» помехами, и ис­правление ошибок в нем.

Один цикл передачи включает в себя считывание в линию такой прямоугольной таблицы. Порядок передачи байтов - слева направо, свеpxy вниз (так же, как при чтении текста на странице). Продолжи-тельность цикла передачи STM-1 составляет 125 мкс, т.е. он повторя­ется с частотой 8 кГц. Каждая клеточка соответствует скорости пере­дачи 8 бит • 8 кГц = 64 кбит/с. Значит, если тратить на передачу в ли нию каждой прямоугольной рамки 125 мкс, то за секунду в линию бу дет передано 9 x 270 x 64 Кбит/с = 155520 Кбит/с, т.е. 155 Мбит/с.

Таблица 6.1. Синхронная цифровая иерархия

Уровень иерархии

Тип синхронного транспортного модуля

Скорость передачи, Мбит/с

1

STM-1

155,520

2

STM-4

622,080

3

STM-16

2488,320

4

STM-64

9953,280


Для создания более мощных цифровых потоков в SDH-системах формируется следующая скоростная иерархия (табл. 6.1): 4 модуля STM-1 объединяются путем побайтового мультиплексирования в мо­дуль STM-4, передаваемый со скоростью 622,080 Мбит/с; затем 4 модуля STM-4 объединяются в модуль STM-16 со скоростью пе­редачи 2488,320 Мбит/с; наконец 4 модуля STM-16 могут быть объединены в высокоскоростной модуль STM-64 (9953,280 Мбит/с).

На рис. 6.8 показано формирование модуля STM-16. Сначала каж дые 4 модуля STM-1 с помощью мультиплексоров с четырьмя входа­ми объединяются в модуль STM-4, затем четыре модуля STM-4 муль­типлексируются таким же 4-входовым мультиплексором в модуль STM -16. Однако существует мультиплексор на 16 входов, с помощью которого можно одновременно объединить 16 модулей STM-1 в модуль STM 16.

Рис. 6.8. Формирование синхронного транспортного модуля STM-16

Формирование модуля STM-1. В сети SDH применены принципы контейнерных перевозок. Подлежащие транспортировке сигна-лы предварительно размещаются в стандартных контейнерах (Соntainer- С). Все операции с контейнерами производятся независимо от их содержания, чем и достигается прозрачность сети SDH, т.е. способность транспортировать различные сигналы, в частности, сигналы PDH.

Наиболее близким по скорости к первому уровню иерархии SDH (155,520 Мбит/с) является цифровой поток со скоростью 139,264 Мбит/с, образуемый на выходе аппаратуры плезиохронной цифровой иерархии ИКМ-1920. Его проще всего разместиьт в модуле STM-1. Для этого поступающий цифровой сигнал сначала «упаковывают» в контейнер (т.е. размещают на определенныx позициях его цикла), который обозначается С-4.

Рамка контейнера С-4 содержит 9 строк и 260 однобайтовых столбцов. Добавлением слева еще одного столбца – маршрутного или трактового заголовка (Path Over Head - РОН) - этот контейнер преобраэуется в виртуальный контейнер VC-4. Наконец, чтобы поместить виртуальный контейнер VC-4 в модуль STM -1, его снабжают указателем (PTR), образуя таким образом административный блок AU-4 (Administrative Unit), а последний помещают непосредственно в модуль STM-1 вместе с секционным заголовком SОН (рис. 6.9. и рис. 6.7).

Синхронный транспортный модуль STM-1 можно загрузить и плезиохроными потоками со скоростями 2,048 Мбит/с. Такие потоки формируются аппаратурой ИКМ-30, они широко распространены в современных сетях.


Рис. 6.9. Размещение контейнеров в модуле STM-1

Для первоначальной «упаковки» использует ся контейнер С12. Цифровой сигнал размещается на определен­ных позициях этого контейнера. Путем добавления маршрутного, или транспортного, заголовка (РОН) образуется виртуальный кон тейнер VC-12. Виртуальные контейнеры формируются и расфор мировываются в точках окончаниях трактов.

В модуле STM-1 можно разместить 63 виртуальных контейнера VC-12. При этом поступают следующим образом. Виртуальный кон­тейнер VC-12 снабжают указателем (PTR) и образуют тем самым транспортный блок TU-12 (Tributary Unit). Теперь цифровые потоки разных транспортных блоков можно объединять в цифровой поток 155,520 Мбит/с (рис. 6.10). Сначала три транспортных блока TU-12 путем мультиплексирования объединяют в группу транспортных бло ков TUG-2 (Tributary Unit Group), затем семь групп TUG-2 мультиплек­сируют в группы транспортных блоков TUG-3, а три группы TUG-3 объединяют вместе и помещают в виртуальный контейнер VC-4. Да­лее путь преобразований известен.

На рис. 6.10 показан также способ размещения в STM-1 трех пото ков от аппаратуры плезиохронной цифровой иерархии ИКМ-480 (34,368 Мбит/с).

Плезиохронные цифровые потоки всех уровней размещаются в контейнерах С с использованием процедуры выравнивания скоро­стей (положительного, отрицательного и двухстороннего).

Наличие большого числа указателей (PTR) позволяет совершенно четко определить местонахождение в модуле STM-1 любого цифрового потока со скоростями 2,048; 34,368 и 139,264 Мбит/с. Выпускаемые про­мышленностью мультиплексоры ввода-вывода (Add/Drop Multiplexer -ADM) позволяют ответвлять и добавлять любые цифровые потоки.

Рис. 6.10. Ввод плезиохронных цифровых потоков в синхронный транспортный модуль STM-1

Важной особенностью аппаратуры SDH является то, что в трактовых и сетевых заголовках помимо маршрутной информации создается много информации, позволяющей обеспечить наблюдение и управление всей сетью в целом, дистанционные переключения в мультиплексорах по требованию клиентов, осуществлять контроль и диагностику, своевременно обнаруживать и устранять неисправнсности, реализовать эффективную эксплуатацию сети и сохранить высо-кое качество предоставляемых услуг.