ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2024
Просмотров: 283
Скачиваний: 0
СОДЕРЖАНИЕ
Часть I. Способы передачи сообщений
1.1 Спектры периодических сигналов
1.2. Спектры непериодических сигналов
1.3. Сигналы электросвязи и их спектры
2.1. Принципы передачи сигналов электросвязи
3.1. Понятие о цифровых сигналах
3.2. Дискретизация аналоговых сигналов
3.3. Квантование и кодирование
3.4. Восстановление аналоговых сигналов
Глава 4. Принципы многоканальной передачи
4.1. Одновременная передача сообщений
4.2. Частотное разделение каналов
4.3. Временное разделение каналов
Глава 5. Цифровые системы передачи
5.1. Формирование группового сигнала
6.3. Регенерация цифровых сигналов
5.4. Помехоустойчивое кодирование
6.1. Плезиохронная цифровая иерархия
6.2. Синхронная цифровая иерархия
7.3. Волоконно-оптические кабельные линии
8.1. Предпосылки создания транспортных сетей
8.2. Системы передачи для транспортной сети
Vc низшего порядка (Low order vc, lovc)
Vc высшего порядка (High order vc, hovc)
8.3. Модели транспортных сетей
8.4. Элементы транспортной сети
8.5. Архитектура транспортных сетей
Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи
Глава 9. Основные понятия и определения
9.1. Информация, сообщения, сигналы
9.2. Системы и сети электросвязи
9.3. Эталонная модель взаимосвязи открытых систем
9.4. Методы коммутации в сетях электросвязи
9.5 Методы маршрутизации в сетях электросвязи
Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации
10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи
10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла
10.3.1 Модель коммутационного узла
10.3.2. Структура коммутационных полей станций и узлов
10.3.3. Элементы теории телетрафика
11.2. Направления развития телеграфной связи
Глава 12. Службы пд. Защита от ошибок и преобразование сигналов
12.2. Сигналы и виды модуляции, используемые в современных модемах
13.1. Компьютеры — архитектура и возможности
13.2. Принципы построения компьютерных сетей
13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
13.4. Сетевые операционные системы
13.5. Локальные компьютерные сети
13.6. Глобальные компьютерные сети
13.7. Телефонная связь по компьютерным сетям
14.1. Основы факсимильной связи
14.2. Организация факсимильной связи
Глава 15. Другие службы документальной электросвязи
Глава 16. Единая система документальной электросвязи
16.1. Интеграция услуг документальной электросвязи [1]
16.2. Назначение и основные принципы построения служб обработки сообщений [2]
16.3. Многофункциональные терминалы
Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах
17.2. Правовые и организационные аспекты информационной безопасности
17.3. Технические аспекты информационной безопасности
Часть III. Интеграция сетей и служб электросвязи
Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)
18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания
18.2. Службы и услуги узкополосной цсио
18.3. Система управления у-цсио
Глава 19. Широкополосные и интеллектуальные сети
19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)
19.3. Способы коммутации в ш-цсио
19.4. Построение коммутационных полей станций ш-цсио
19.5. Причины и условия перехода к интеллектуальной сети (ис)
Глава 20. Система межстанционной сигнализации по общему каналу в цсио
20.1. Понятие об общем канале сигнализации
20.2. Протоколы системы сигнализации № 7 itu-t
20.3. Способы защиты от ошибок в окс № 7
20.5. Способы построения сигнальной сети
Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»
21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet
21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»
21.3. Цифровая коммутационная система с программным управлением с&с08
21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750
Часть IV. Современные методы управления в телекоммуникациях
22.1. Многоуровневое представление задач управления телекоммуникациями
22.2. Функциональные группы задач управления
Глава 23. Интегрированные информационные системы управления предприятиями электросвязи
23.1. Понятия и определения в области информационных систем управления предприятием
Глава 24. Управление услугами. Качество предоставляемых услуг
24.1. Система качества услуг электросвязи
24.2. Базовые составляющие обеспечения качества услуги
24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи
Глава 25. Управление услугами.
25.3. Централизованный способ построения системы расчетов
25.4. Интеграция аср с системами управления tmn
25.5. Основные технические требования для аср
25.6. Обзор автоматизированных систем расчетов
Глава 26. Управление сетями и сетевыми элементами
26.1. Архитектура систем управления сетями и сетевыми элементами
26.2. Системы управления первичными и вторичными сетями
26.3. Принципы построения системы управления
Глава 27. Решения компании strom telecom в области tmn (Foris oss)
27.1. Общая характеристика семейства продуктов Foris oss
27.2. Автоматизация расчетов. Подсистема TelBill
27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс
27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge
27.5. Подсистемы TelRes, TelTe, TelRc
27.6. Система «Электронный замок»
27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)
17.3. Технические аспекты информационной безопасности
Криптографические методы и средства защиты. Методы крип-тографии (шифрования) позволяют решить комплекс проблем, свя-занных с защитой информации. Они направлены на обеспечение скрытия информации, содержащейся в сообщении. Кроме того, они используются в аутентификации пользователей и обеспечении под-линности принимаемых сообщений. Исходное сообщение, над кото-рым производится операция шифрования, называется открытым тек-стом, а результат шифрования - шифротекстом, или криптограммой.
В криптографии обычно рассматриваются два типа криптографи-ческих алгоритмов [5-8]. Это классические криптографические алго-ритмы, основанные на использовании секретных ключей, и новые криптографические алгоритмы с открытым ключом, основанные на использовании ключей двух типов: секретного (закрытого) и открыто-го, так называемые двухключевые алгоритмы.
В классической криптографии («криптографии с секретным клю-чом» или «одноключевой криптографии») используется только одна единица секретной информации - ключ, знание которого позволяет отправителю зашифровать информацию (текстовое, графическое или речевое сообщение), а получателю - расшифровать. К наиболее из-вестным стандартам на засекречивание данных относится стандарт по цифровой криптографии (DES - Digital Encryption Standart), приня-тый в США. Этот стандарт, в частности, определяет размер блока исходного текста в 64 бита и величину ключа 56 бит [5]. Качество алгоритма DES считается достаточно хорошим, так как с момента опубликования стандарта в 1974 г. не известен ни один случай расшифровки шифрограмм без знания ключа.
Классические (одноключевые) системы шифрования требуют для передачи ключа получателю информации «защищенного канала», и если число взаимодействующих абонентов велико, то проблема об-мена ключами становится весьма затруднительной. Действительно, в сети с N абонентами имеется N(N- 1)/2 пар абонентов, каждая из ко-торых требует свой ключ шифрования. Таким образом, в сети с чис-лом абонентов N = 10000 потребуется 5 x 107 ключей, что создает серьезную проблему по их распределению между абонентами. В со-ответствии с этим в последнее время широко распространились ме-тоды шифрования, базирующиеся на двухключевой системе шифро-вания (ДКСШ). В рекомендациях МСЭ Х.200, Х.400, Х.509 ДКСШ предлагается как основной метод шифрования.
Использование ДКСШ технологии открытых ключей снимает слож-ную проблему, возникающую в большой сети при распространении и хранении огромного числа секретных паролей. Особенность техноло-гии состоит в том, что одновременно генерируется уникальная пара ключей, при этом текст, зашифрованный одним из них, может быть расшифрован только с использованием второго ключа, и наоборот. Каждый пользователь генерирует пару ключей, оставляет один за-крытый у себя и никому никогда не передает, а второй открытый пе-редает тем, с кем ему необходима защищенная связь. Если этот пользователь хочет аутентифицировать себя (поставить электронную подпись), то он шифрует текст своим закрытым ключом и передает этот текст своим корреспондентам. Если им удастся расшифровать текст открытым ключом этого пользователя, то становится ясно, что тот, кто его зашифровал, имеет в своем распоряжении парный закры-тый ключ. Если пользователь хочет получать секретные сообщения, то его корреспонденты зашифровывают их с помощью открытого ключа этого пользователя. Расшифровать эти сообщения может только сам пользователь с помощью своего закрытого ключа. При необходимости взаимной аутентификации и двунаправленного обме-на секретными сообщениями каждая из общающихся сторон генери-рует собственную пару ключей и посылает открытый ключ своему корреспонденту.
Хотя информация об открытом ключе не является секретной, ее нужно защищать от подлогов, чтобы злоумышленник под именем ле-гального пользователя не навязал свой открытый ключ, после чего с помощью своего закрытого ключа он может расшифровывать все сообщения, посылаемые легальному пользователю, и отправлять свои сообщения от его имени.
Методы и средства аутентификации пользователей и сообщения. Обеспечение подлинности взаимодействующих пользователей и сообщения (его целостности) в телекоммуникационных системах состоит в том, чтобы дать возможность санкционированному терминалу-приемнику, с определенной вероятностью гарантировать:
а) что принятое им сообщение действительно послано конкрет-ным терминалом - передатчиком;
б) что оно не является повтором уже принятого сообщения (встав-кой);
в) что информация, содержащаяся в этом сообщении, не замене-на и не искажена.
Решение этих задач для удобства рассмотрения последнего мате-риала объединим одним термином - аутентификация.
К настоящему времени разработано множество методов аутенти-фикации, включая различные схемы паролей, использование призна-ков и ключей, а также физических характеристик (например, отпечат-ки пальцев и образцы голоса). За исключением использования клю-чей шифрования для целей аутентификации все эти методы в усло-виях телекоммуникационной системы связи в конечном счете сводят-ся к передаче идентификацио-приемнику, выполняющему аутентифи-кацию. Поэтому механизм аутентификации зависит от методов защи-ты информации, предотвращающих раскрытие информации для аутентификации и обеспечивающих подлинность, целостность и упоря-доченность сообщений.
Существует несколько возможных подходов к решению задачи ау-тентификации, которые в зависимости от используемой при этом сис-темы шифрования могут быть разделены на две группы:
1) аутентификация с одноключевой системой шифрования;
2) аутентификация с двухключевой системой шифрования.
При этом под «используемой системой шифрования» будем пони-мать наличие в телекоммуникационной системе подсистемы формирования и распределения ключей шифрования, обеспечивающей пользователей (передатчик и приемник) соответствующими ключами шифрования и организующей контроль за хранением и порядком их использования.
Не рассматривая подробно способы аутентификации в условиях использования одноключевой системы шифрования, которые описа-ны в [1], отметим, что в этой системе приемник, передатчик и служба формирования и распределения ключей должны доверять друг другу. Это неизбежное требование, так как в данном случае приемник и пе-редатчик владеют одними и теми же ключами шифрования и рас-шифрования и, следовательно, каждый будет иметь возможность де-лать все, что может делать другой.
В военной и дипломатической связи такие предположения в ос-новном верны. В коммерческом мире необходимо учитывать возмож-ность обмана пользователей друг друга. Кроме того, абоненты систе-мы могут не доверять администрации службы формирования и рас-пределения ключей шифрования. В связи с этим возникает необхо-димость решения проблемы защиты от следующих угроз:
- передатчик посылает сообщение приемнику, а затем отрицает факт отправления сообщения;
- приемник, приняв сообщение от передатчика, искажает его, а в последствии утверждает, что такое сообщение он получил от пере-датчика;
- приемник формирует ложное сообщение, обвиняя впоследствии в этом передатчик.
Одним из перспективных направлений развития средств защиты информации от рассматриваемых угроз, достаточно прочно утвер-дившимся в Рекомендациях МСЭ (Х.400, Х.509, Х.800), считается ис-пользование способов защиты, базирующихся на двухключевой сис-теме шифрования. Основным доводом «за» использование указанной системы является то, что секретные ключи шифрования в этой сис-теме формируются и хранятся лично пользователем, что, во-первых, органично соответствует пользовательскому восприятию своих соб-ственных требований к формированию ключа шифрования и снимает проблему организации оперативной смены ключа шифрования вплоть до оптимальной: каждому сообщению новый ключ.
Разделение (на основе формирования ключей) процедур шиф-рования дает возможность абонентам системы связи записывать свои открытые ключи в периодически издаваемый (как один из возможных вариантов распределения открытых ключей) службой безопасности системы справочник. В результате вышеуказанные проблемы могут быть решены при помощи следующих простых протоколов:
1) один абонент может послать секретное сообщение другому абоненту, шифруя сообщение с помощью выбранного в справочнике открытого ключа абонента получателя. Тогда только обладатель соответствующего секретного ключа сможет правильно расшифровать полученное зашифрованное сообщение;
2) передающий абонент (передатчик) может зашифровать сооб-щение на своем секретном ключе. Тогда любой приемный абонент, имеющий доступ к открытому ключу передающего абонента (передатчика), может расшифровать полученное зашифрованное сообщение и убедиться, что это сообщение действительно было зашифровано тем передающим абонентом, который указан в идентификаторе адреса передатчика.
Основная доля практически используемых способов аутентификации с двухключевой системой шифрования относится к способам ау-тентификации пользователя и сообщения [1].
В качестве примера рассмотрим аутентификацию пользователей на основе сертификатов.
Аутентификация на основе сертификатов - альтернатива использованию паролей и представляется естественным решением, когда число пользователей сети (пусть и потенциальных) измеряется мил-лионами. В таких условиях процедура предварительной регистрации пользователей, связанная с назначением и хранением их паролей, становится крайне обременительной, опасной, а иногда и просто нереализуемой.
Аутентификация пользователя на основе сертификатов происходит примерно так же, как при пропуске людей на территорию большо-го предприятия. Вахтер разрешает проход на основании документа, который содержит фотографию и подпись данного сотрудника, удо-стоверенные печатью предприятия и подписью лица, выдавшего его. Сертификат - аналог этого документа и выдается по запросам сер-тифицирующими организациями при выполнении определенных ус-ловий. Он представляет собой электронную форму, в которой имеют-ся такие поля, как имя владельца, наименование организации, вы-давшей сертификат, открытый ключ владельца. Кроме того, сертифи-кат содержит электронную подпись выдавшей организации - все поля сертификата зашифрованы закрытым ключом этой организации. Использование сертификатов основано на предположении, что серти-фицирующих организаций немного и их открытые ключи могут быть обнародованы каким-либо способом, например с помощью тех же публикаций в журналах.