Файл: Телекоммуникационные системы и сети - КНИГА.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.10.2024

Просмотров: 306

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Часть I. Способы передачи сообщений

Глава 1. Спектры

1.1 Спектры периодических сигналов

1.2. Спектры непериодических сигналов

1.3. Сигналы электросвязи и их спектры

Глава 2. Модуляция

2.1. Принципы передачи сигналов электросвязи

2.2. Амплитудная модуляция

2.3 Угловая модуляция

2.4. Импульсная модуляция

2.5. Демодуляция сигналов

Глава 3. Цифровые сигналы

3.1. Понятие о цифровых сигналах

3.2. Дискретизация аналоговых сигналов

3.3. Квантование и кодирование

3.4. Восстановление аналоговых сигналов

Глава 4. Принципы многоканальной передачи

4.1. Одновременная передача сообщений

4.2. Частотное разделение каналов

4.3. Временное разделение каналов

Глава 5. Цифровые системы передачи

5.1. Формирование группового сигнала

5.2. Синхронизация

6.3. Регенерация цифровых сигналов

5.4. Помехоустойчивое кодирование

Глава 6. Цифровые иерархии

6.1. Плезиохронная цифровая иерархия

6.2. Синхронная цифровая иерархия

Глава 7. Линии передачи

7.1. Медные кабельные линии

7.2. Радиолинии

7.3. Волоконно-оптические кабельные линии

Глава 8. Транспортные сети

8.1. Предпосылки создания транспортных сетей

8.2. Системы передачи для транспортной сети

Vc низшего порядка (Low order vc, lovc)

Vc высшего порядка (High order vc, hovc)

8.3. Модели транспортных сетей

8.4. Элементы транспортной сети

8.5. Архитектура транспортных сетей

Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи

Глава 9. Основные понятия и определения

9.1. Информация, сообщения, сигналы

9.2. Системы и сети электросвязи

9.3. Эталонная модель взаимосвязи открытых систем

9.4. Методы коммутации в сетях электросвязи

9.5 Методы маршрутизации в сетях электросвязи

Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации

Глава 10. Телефонные службы

10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи

10.2. Структура городских телефонных сетей (гтс) с низким уровнем цифровизации и перспективы развития

10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла

10.3.1 Модель коммутационного узла

10.3.2. Структура коммутационных полей станций и узлов

10.3.3. Элементы теории телетрафика

Глава 11. Телеграфные службы

11.1. Сети телеграфной связи

11.2. Направления развития телеграфной связи

Глава 12. Службы пд. Защита от ошибок и преобразование сигналов

12.1. Методы защиты от ошибок

12.2. Сигналы и виды модуляции, используемые в современных модемах

Глава 13. Службы пд. Сети пд.

13.1. Компьютеры — архитектура и возможности

13.2. Принципы построения компьютерных сетей

13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей

13.4. Сетевые операционные системы

13.5. Локальные компьютерные сети

13.6. Глобальные компьютерные сети

13.7. Телефонная связь по компьютерным сетям

Глава 14. Факсимильные службы

14.1. Основы факсимильной связи

14.2. Организация факсимильной связи

Глава 15. Другие службы документальной электросвязи

15.1. Видеотекс

15.2. Голосовая почта

Глава 16. Единая система документальной электросвязи

16.1. Интеграция услуг документальной электросвязи [1]

16.2. Назначение и основные принципы построения служб обработки сообщений [2]

16.3. Многофункциональные терминалы

Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах

17.1. Общие положения

17.2. Правовые и организационные аспекты информационной безопасности

17.3. Технические аспекты информационной безопасности

Часть III. Интеграция сетей и служб электросвязи

Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)

18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания

18.2. Службы и услуги узкополосной цсио

18.3. Система управления у-цсио

Глава 19. Широкополосные и интеллектуальные сети

19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)

19.2. Услуги ш-цсио

19.3. Способы коммутации в ш-цсио

19.4. Построение коммутационных полей станций ш-цсио

19.5. Причины и условия перехода к интеллектуальной сети (ис)

19.6. Услуги ис

Глава 20. Система межстанционной сигнализации по общему каналу в цсио

20.1. Понятие об общем канале сигнализации

20.2. Протоколы системы сигнализации № 7 itu-t

20.3. Способы защиты от ошибок в окс № 7

20.4. Характеристики окс

20.5. Способы построения сигнальной сети

Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»

21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet

21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»

21.3. Цифровая коммутационная система с программным управлением с&с08

21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750

Часть IV. Современные методы управления в телекоммуникациях

Глава 22. Общие положения

22.1. Многоуровневое представление задач управления телекоммуникациями

22.2. Функциональные группы задач управления

Глава 23. Интегрированные информационные системы управления предприятиями электросвязи

23.1. Понятия и определения в области информационных систем управления предприятием

23.2. Анализ структуры интегрированной информационной системы управления предприятием регионального оператора связи

23.3. Новое системное проектирование как передовая технология на этапе внедрения современных информационных систем

23.4. Требования к функциональности интегрированной информационной системы управления предприятием для регионального оператора связи

23.5. Требования к используемым информационным технологиям, техническим средствам и программному обеспечению

Глава 24. Управление услугами. Качество предоставляемых услуг

24.1. Система качества услуг электросвязи

24.2. Базовые составляющие обеспечения качества услуги

24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи

Глава 25. Управление услугами.

25.1. Общие положения

25.2. Классификация аср

25.3. Централизованный способ построения системы расчетов

25.4. Интеграция аср с системами управления tmn

25.5. Основные технические требования для аср

25.6. Обзор автоматизированных систем расчетов

25.7. Заключение

Глава 26. Управление сетями и сетевыми элементами

26.1. Архитектура систем управления сетями и сетевыми элементами

26.2. Системы управления первичными и вторичными сетями

26.3. Принципы построения системы управления

Глава 27. Решения компании strom telecom в области tmn (Foris oss)

27.1. Общая характеристика семейства продуктов Foris oss

27.2. Автоматизация расчетов. Подсистема TelBill

27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс

27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge

27.5. Подсистемы TelRes, TelTe, TelRc

27.6. Система «Электронный замок»

27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)

27.8. Подсистема Контакт-центр

Алгоритм формирования проверочных элементов а5, а6, а7 может быть задан матрицей, называемой проверочной. Эта матрица содержит r строк и n столбцов. Применительно к сформированному нами коду (7,4) она имеет вид:

Единицы, расположенные на местах, соответствующих информа­ционным элементам матрицы Н(7,4), указывают на то, какие инфор­мационные элементы должны участвовать в формировании прове­рочного элемента. Единица на месте, соответствующем проверочно­му элементу, указывает, какой проверочный элемент получается при суммировании по модулю два информационных элементов. Так, из первой строки следует равенство

Процедура обнаружения ошибок основана на использовании про­верок (12.4)-(12.6). Очевидно, что проверочные элементы, сформи­рованные из принятых информационных, при отсутствии ошибок должны совпадать с принятыми проверочными.

Пример 12.3. Переданная кодовая комбинация имеет вид 1000111 (первая строка матрицы (12.3)). В результате действия помех на прием­ном конце имеем . Произведем про­верки (12.4)-(12.6):

, (12.7)

(12.8)

(12.9)

В то же время , т.е. , что го­ворит о наличии ошибок в принятой кодовой комбинации. При отсутствии в принятой кодовой комбинации ошибок , ,

Комбинация b3b2b1 называется синдромом (проверочным векто­ром). Равенство нулю всех элементов синдрома указывает на отсут­ствие ошибок или на то, что кодовая комбинация принята с ошибками, которые превратили ее в другую разрешенную. Последнее событие имеет существенно меньшую вероятность, чем первое.


Вид ненулевого синдрома определяется характером ошибок в ко­довой комбинации. В нашем случае вид синдрома зависит от место­положения одиночной ошибки. В табл. 12.2 отражено соответствие между местоположением одиночной ошибки для кода, заданного мат­рицей (12.3), и видом синдрома.

Таблица 12.2. Местоположение ошибки и вид синдрома

Номер элемента, в котором произошла ошибка

1

2

3

4

5

6

7

Вид синдрома

111

101

110

011

001

010

100

Таким образом, зная вид синдрома, можно определить место, где произошла ошибка, и исправить принятый элемент на противоположный.

Пример 12.4. Передавалась кодовая комбинация 1000111. При­нята кодовая комбинация 0000111. Синдром имеет вид 111. В соот­ветствии с табл. 12.2 исказился первый элемент (а1). Изменим первый элемент на противоположный:

Полученная в результате исправления ошибки кодовая комбина­ция совпадает с переданной.

Рассмотренный код (7,4) гарантированно обнаруживает двухкрат­ные ошибки, а исправляет только однократные ошибки.

Циклические коды. В теории циклических кодов кодовые комби­нации обычно представляются в виде полинома. Так, п-элементная кодовая комбинация записывается в виде

A(x) = an-1xn-1 + an-2xn-2 + … + a1x + a0,


где ai = {0,1}, причем аi = 0 соответствуют нулевым элементам ком­бинации, а аi = 1 - ненулевым. Например, комбинациям 1101 и 1010 соответствуют многочлены A1(х) = х3 + х2 +1 и А2(х) = х3 + х.

При формировании комбинаций циклического кода часто исполь­зуют операции сложения многочленов и деления одного многочлена на другой. Так,

A1(х) + A2(х) = (х3 + х2 +1) + (х3 + х) = х2 + х +1,

поскольку х3 + х3 = х3(11) = 0.

Рассмотрим операцию деления на следующем примере:

Таким образом, зная вид синдрома, можно определить место, где произошла ошибка, и исправить принятый элемент на противоположный.

Деление выполняется, как обычно, только вычитание заменяется суммированием по модулю два.

Разрешенные комбинации циклического кода обладают двумя очень важными отличительными признаками: циклический сдвиг раз­решенной комбинации тоже приводит к разрешенной кодовой комби­нации. Все разрешенные кодовые комбинации делятся без остатка на полином Р(х), называемый образующим. Эти свойства используются при построении кодов, кодирующих и декодирующих устройств, а так­же при обнаружении и исправлении ошибок.

Найдем алгоритмы построения циклического кода, удовлетворяю­щего перечисленным выше условиям. Задан полином Р(х) = ar-1xr + ar-2xr-1 + ... + 1, определяющий корректирующую способность кода, и задан исходный простой код, который требуется преобразовать в корректирующий циклический.

Обозначим многочлен, соответствующий комбинации простого ко­да, Q(x). Возьмем произведение Q(х)xr разделим его на Р(х). В ре­зультате получим многочлен G(x) и остаток R(x)/P(x):

(12.10)


Умножим левую и правую части на Р(х), тогда (12.10) перепишется в виде

Q(x)xr = G(x)P(x) + R(x) (12.11)

Перепишем равенство (12.11) в виде

G(x)P(x) = Q(x)xr + R(x) (12.12)

Левая часть (12.12) делится без остатка на Р(х), значит, без остат­ка делится и правая часть. Из (12.12) вытекают два способа форми­рования комбинаций циклического кода: путем умножения многочлена G(x) на Р(х) и путем деления Q(х)xr на Р(х) и приписывания к Q(x)xr остатка от деления R(х).

Пример 12.5. Задан полином G(x) = x3 + x, соответствующий комбинации простого кода. Сформировать комбинацию цикличе­ского кода (7,4) с производящим полиномом Р(х) = х3 + х2 + 1. Можно получить комбинацию циклического кода в виде G(x)P(x) = = (х3 + х)(х3 + х2 +1) = х6 + х5 + х4 + х. Однако в полученной комби­нации нельзя отделить информационные элементы от проверочных, и код получается неразделимым.

Перейдем ко второму способу, который чаще всего применяется на практике. Проделаем необходимые операции по получению ком­бинации циклического кода:

3) (х6 + х4+1) - комбинация циклического кода, полученная ме­тодом деления на производящий полином. Она может быть перепи­сана в виде 1010001. Первые четыре элемента - информационные, последние три - проверочные, т.е. полученный код - разделимый.

Для обнаружения ошибок в принятой кодовой комбинации доста­точно поделить ее на производящий полином. Если принятая комби­нация разрешенная, то остаток от деления будет нулевым. Ненуле­вой остаток свидетельствует о том, что принятая комбинация содер­жит ошибки. По виду остатка (синдрома) можно в некоторых случаях также сделать вывод о характере ошибки и исправить ее.

Циклические коды достаточно просты в реализации, обладают вы­сокой корректирующей способностью (способностью исправлять и обнаруживать ошибки) и поэтому рекомендованы МСЭ-Т для приме­нения в аппаратуре ПД. Согласно рекомендации V.41 в системах ПД с ОС рекомендуется применять код с производящим полиномом Р(х) = х16 + х12 + х5+1.


Эффективность применения корректирующих кодов. Полез­ный эффект от применения корректирующих кодов заключается в по­вышении верности. Вероятность неправильного приема кодовой ком­бинации простого кода определяется как вероятность появления в кодовой комбинации хотя бы одной ошибки, т.е.

где PОШ - вероятность неправильного приема единичного элемента; k - число элементов в комбинации простого кода. При применении систематических корректирующих кодов к исходной кодовой комбина­ции добавляются проверочные элементы, позволяющие исправлять или обнаруживать ошибки. Так, если код используется в режиме ис­правления ошибок и кратность исправляемых ошибок tи.ош, то вероят­ность неправильного приема кодовой комбинации

В результате применения корректирующего кода в режиме ис-правления ошибок вероятность ошибки уменьшается в Ки раз: . Однако это достигается за счет увеличения затрат на реализацию системы и снижения скорости передачи информации. Если в системе с простым кодом скорость равна Сп, то в системе с корректирующим кодом скорость - коэффициент, характеризующий потери скорости вследствие введенной в код избыточности. Чем больше избыточность (меньше ). тем меньше скорость передачи информации, т.е. тем меньше в единицу времени передается полезной информации.

Качество реальных каналов во времени меняется, и если заданы требования на верность передачи, то необходимо ввести такую избы-точность, которая обеспечивала бы заданную верность даже при са-мом плохом качестве канала. Напрашивается мысль о целесообраз-ности изменения избыточности, вводимой в кодовую комбинацию, по мере изменения характеристик канала связи. Системы, в которых меняется избыточность с изменением качества канала, относятся к чис-лу адаптивных. Одним из типов адаптивных систем являются систе-мы с обратной связью. В этих системах между приемником и пере-датчиком помимо основного (прямого) канала имеется вспомогательный (обратный).