ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2024
Просмотров: 307
Скачиваний: 0
СОДЕРЖАНИЕ
Часть I. Способы передачи сообщений
1.1 Спектры периодических сигналов
1.2. Спектры непериодических сигналов
1.3. Сигналы электросвязи и их спектры
2.1. Принципы передачи сигналов электросвязи
3.1. Понятие о цифровых сигналах
3.2. Дискретизация аналоговых сигналов
3.3. Квантование и кодирование
3.4. Восстановление аналоговых сигналов
Глава 4. Принципы многоканальной передачи
4.1. Одновременная передача сообщений
4.2. Частотное разделение каналов
4.3. Временное разделение каналов
Глава 5. Цифровые системы передачи
5.1. Формирование группового сигнала
6.3. Регенерация цифровых сигналов
5.4. Помехоустойчивое кодирование
6.1. Плезиохронная цифровая иерархия
6.2. Синхронная цифровая иерархия
7.3. Волоконно-оптические кабельные линии
8.1. Предпосылки создания транспортных сетей
8.2. Системы передачи для транспортной сети
Vc низшего порядка (Low order vc, lovc)
Vc высшего порядка (High order vc, hovc)
8.3. Модели транспортных сетей
8.4. Элементы транспортной сети
8.5. Архитектура транспортных сетей
Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи
Глава 9. Основные понятия и определения
9.1. Информация, сообщения, сигналы
9.2. Системы и сети электросвязи
9.3. Эталонная модель взаимосвязи открытых систем
9.4. Методы коммутации в сетях электросвязи
9.5 Методы маршрутизации в сетях электросвязи
Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации
10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи
10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла
10.3.1 Модель коммутационного узла
10.3.2. Структура коммутационных полей станций и узлов
10.3.3. Элементы теории телетрафика
11.2. Направления развития телеграфной связи
Глава 12. Службы пд. Защита от ошибок и преобразование сигналов
12.2. Сигналы и виды модуляции, используемые в современных модемах
13.1. Компьютеры — архитектура и возможности
13.2. Принципы построения компьютерных сетей
13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
13.4. Сетевые операционные системы
13.5. Локальные компьютерные сети
13.6. Глобальные компьютерные сети
13.7. Телефонная связь по компьютерным сетям
14.1. Основы факсимильной связи
14.2. Организация факсимильной связи
Глава 15. Другие службы документальной электросвязи
Глава 16. Единая система документальной электросвязи
16.1. Интеграция услуг документальной электросвязи [1]
16.2. Назначение и основные принципы построения служб обработки сообщений [2]
16.3. Многофункциональные терминалы
Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах
17.2. Правовые и организационные аспекты информационной безопасности
17.3. Технические аспекты информационной безопасности
Часть III. Интеграция сетей и служб электросвязи
Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)
18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания
18.2. Службы и услуги узкополосной цсио
18.3. Система управления у-цсио
Глава 19. Широкополосные и интеллектуальные сети
19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)
19.3. Способы коммутации в ш-цсио
19.4. Построение коммутационных полей станций ш-цсио
19.5. Причины и условия перехода к интеллектуальной сети (ис)
Глава 20. Система межстанционной сигнализации по общему каналу в цсио
20.1. Понятие об общем канале сигнализации
20.2. Протоколы системы сигнализации № 7 itu-t
20.3. Способы защиты от ошибок в окс № 7
20.5. Способы построения сигнальной сети
Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»
21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet
21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»
21.3. Цифровая коммутационная система с программным управлением с&с08
21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750
Часть IV. Современные методы управления в телекоммуникациях
22.1. Многоуровневое представление задач управления телекоммуникациями
22.2. Функциональные группы задач управления
Глава 23. Интегрированные информационные системы управления предприятиями электросвязи
23.1. Понятия и определения в области информационных систем управления предприятием
Глава 24. Управление услугами. Качество предоставляемых услуг
24.1. Система качества услуг электросвязи
24.2. Базовые составляющие обеспечения качества услуги
24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи
Глава 25. Управление услугами.
25.3. Централизованный способ построения системы расчетов
25.4. Интеграция аср с системами управления tmn
25.5. Основные технические требования для аср
25.6. Обзор автоматизированных систем расчетов
Глава 26. Управление сетями и сетевыми элементами
26.1. Архитектура систем управления сетями и сетевыми элементами
26.2. Системы управления первичными и вторичными сетями
26.3. Принципы построения системы управления
Глава 27. Решения компании strom telecom в области tmn (Foris oss)
27.1. Общая характеристика семейства продуктов Foris oss
27.2. Автоматизация расчетов. Подсистема TelBill
27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс
27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge
27.5. Подсистемы TelRes, TelTe, TelRc
27.6. Система «Электронный замок»
27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)
13.2. Принципы построения компьютерных сетей
Все многообразие компьютерных сетей можно классифицировать по группе признаков:
1) территориальная распространенность;
2) ведомственная принадлежность;
3) скорость передачи информации;
4) тип среды передачи.
По территориальной распространенности сети могут быть локаль-ными, региональными и глобальными. Локальные - это сети, пере-крывающие территорию не более 10 км2; региональные - располо-женные на территории города или области; глобальные - на террито-рии государства или группы государств, например всемирная сеть Internet.
По принадлежности различают ведомственные и государственные сети. Ведомственные сети принадлежат одной организации и распо-лагаются на ее территории. Это может быть локальная сеть предпри-ятия. Несколько отделений одной кампании, расположенные на территории города, области, страны или государства, образуют корпора-тивную компьютерную сеть. Государственные сети - сети, используе-мые в государственных структурах.
По скорости передачи информации компьютерные сети делятся на низко-, средне-, высокоскоростные.
По типу среды передачи разделяются на сети коаксиальные, на витой паре, оптоволоконные, с передачей информации по радиокана-лам, в инфракрасном диапазоне и т.д. Следует заметить, что основ-ные отличия в принципах построения сетей определяются средой передачи.
Компьютеры, включаемые в компьютерные сети, выполняют функ-ции либо серверов, либо рабочих станций. Серверы - это достаточно мощные ЭВМ, предоставляющие свои ресурсы менее мощным маши-нам, выполняющим роль рабочих станций. В качестве последних ис-пользуются персональные компьютеры. Серверы различают по ос-новным функциям, которые они выполняют: файловые, печати, при-ложений и т.д. Файловый сервер служит для хранения файлов и пре-доставления их для использования рабочим станциям сети. Сервер печати производит функции сетевой печати. На сервере приложений выполняются задачи, которые могут быть запущены с любой рабочей станции, имеющей доступ к данному серверу.
Если компьютеры находятся на территории одного предприятия (организации) и включены в одну локальную сеть, то рабочие станции подключаются к серверам через сетевое оборудование локальных сетей. Компьютеры, подключенные к разным локальным сетям, удаленным друг от друга на существенное расстояние, соединяются с использованием средств региональных или глобальных компьютерных сетей. Возможен доступ к серверам локальных сетей с использованием сетей связи общего пользования, например, телефонной или региональных (глобальных) сетей передачи данных.
Структуры перечисленных сетей могут быть разнообразными. Для локальных более характерны регулярные структуры: шина, кольцо, звезда. Не исключены комбинации указанных структур сетей. Для ре-гиональных и глобальных сетей более характерны иерархические структуры.
13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
Для организации эффективного взаимодействия между разнотип-ными компьютерами в компьютерных сетях был разработан междуна-родный стандарт, в котором описана архитектура взаимодействия открытых систем (см. гл. 9).
Вычислительная система, отвечающая стандартам, принятым в концепции взаимодействия открытых систем, будет открыта для взаимосвязи с любой другой системой, отвечающей этим же стандар-там. Стандарт по взаимодействию вычислительных систем принят международной организацией по стандартизации (МОС, английская аббревиатура ISO) под номером 7498, а позднее - Международным консультативным комитетом по телефонии и телеграфии (МККТТ). Современное название этой организации Международный союз элек-тросвязи (МСЭ-Т), под номером Х.200. В нем предусматривается раз-биение функций сложной системы, реализующей организацию взаи-модействия абонентских систем (терминального оборудования) на N простых функций, т.е. разбиение сложной системы на подсистемы. Подсистемы одной системы связаны друг с другом через межуров-невые интерфейсы, а подсистемы разных систем - через протоколы N-го уровня. Подробнее термины и определения были описаны. Здесь же рассмотрим конкретные реализации наиболее распростра-ненных, стандартов. Не всегда в стандартах рассматривается прото-кол, соответствующий какому-то определенному уровню. Часто в одном стандарте описываются протоколы, соответствующие нескольким уровням модели ISO. К таким стандартам относится, например, стандарт Х.25.
Помимо вышеупомянутых МОС и МСЭ-Т, стандартизацией в об-ласти электросвязи занимаются также:
1) ANSI - American National Standards Institute (Американский нацио-нальный институт стандартов);
2) EIA - Electronic industries Association (Ассоциация электронной ин-дустрии);
3) ЕСМА - European Computer Manufactures Association (Европейская ассоциация производителей ЭВМ);
4) IEEE - Institute of Electronic and Electrical Engineers (Институт ин-женеров по электронике и электротехнике);
5) Госстандарт Российской Федерации.
Стандарты протоколов физического уровня. Функции протоко-лов физического уровня (уровень 1) обеспечивают взаимодействие процедур канального уровня с физической средой передачи, по кото-рой передается сигнал. В этих стандартах, как правило, описываются принципы построения устройств преобразования сигналов (модемов) и межуровневых интерфейсов, описывающих как уровень 1 связыва-ется с уровнем 2, предоставляя ему свои услуги.
Наибольшее количество стандартов физического уровня и интер-фейсов между физическим и канальным уровнем опубликовано МККТТ (МСЭ-Т). Перечислим некоторые из них:
1) V.21 -дуплексный модем со скоростью передачи 300 бит/с, пред-назначенный для использования в общей коммутируемой теле-фонной сети;
2) V.22 - дуплексный модем со скоростью передачи 1200 бит/с, пред-назначенный для использования в общей коммутируемой теле-фонной сети и выделенных каналах;
3) V.23 - модем со скоростью передачи 600/1200 бит/с, предназна-ченный для использования в общей коммутируемой телефонной сети;
4) V.26 - модем со скоростью передачи 2400 бит/с, предназначен-ный для использования в четырехпроводных каналах выделен-ного типа;
5) V.27 - модем со скоростью передачи данных 4800 бит/с с ручным корректором, предназначенный для использования в выделенных каналах телефонного типа.
Имеются стандарты интерфейсов с модемами, например, V.24 -«Перечень обозначений цепей обмена между оконечным оборудова-нием данных (ООД) и аппаратурой окончания канала данных».
Известны также стандарты МСЭ-Т, в которых описывается физи-ческий уровень серии X, например, Х.21 - «Интерфейс между оконеч-ным оборудованием данных (ООД) и аппаратурой окончания канала данных (АКД) для синхронной работы в сетях передачи данных обще-.го пользования», эта серия стандартов относится к сетям передачи данных общего пользования.
Кроме МСЭ-Т, стандарты физического уровня разрабатывались и другими организациями. Например, всемирно-известный стандарт RS-232C, разработанный EIA и используемый в устройствах подклю-чения к персональным компьютерам периферийных устройств. Большинство стандартов, опубликованных разными организациями, дублируют друг друга. Например, стандарты МСЭ-Т V.24 и стандарт EIA RS-232C [5, 6].
Стандарты протоколов канального уровня. В качестве основ-ных функций канального уровня можно перечислить следующие:
1) синхронизация по кодовым комбинациям (по байтам);
2) разбиение потока информации, поступающего из физического уровня, на сегменты (блоки информации), которые называются кадрами канального уровня, и формирование кадров канального уровня из протокольных единиц (для сетей с коммутацией пакетов - это пакеты), поступающих на канальный уровень с вышеле-жащего сетевого уровня;
3) распознавание кадров, передаваемых между станциями компью-терных сетей (каждый кадр имеет адрес станции его передавшей);
4) обеспечение возможности передачи информации любым кодом (прозрачности по кодам);
5) обеспечение коррекции ошибок, возникающих при передаче ин-формации.
Протоколы канального уровня можно разделить на две группы: байт- и бит-ориентированные протоколы, информация, передаваемая с их помощью, рассматривается соответственно на уровне одного байта или бита, и наименьшей обрабатываемой единицей информа-ции является байт или бит.
Байт-ориентированные протоколы - это процедуры управления каналом передачи данных, в которых для функции управления при-меняются структуры определенных знаков первичного кода, напри-мер, стандартного американского национального кода ASCII.
В бит-ориентированных протоколах управление каналом произ-водится посредством анализа битовых последовательностей, пред-ставляющих собой поля кадра канального уровня.
При передаче через канал связи информация представляется в виде кадра, состоящего из собственно блока данных и служебной части, в которую входят поля, определяющие начало кадра, адресную часть, и поле управления. В качестве примера рассмотрим несколько протоколов канального уровня.
1. Байт-ориентированный протокол BSC (Binary Synchronous Communication) разработан фирмой IBM в 1968 г. Формат кадра при-веден на рис. 13.1.
Контрольная сумма получается на передающей стороне путем суммирования всех знаков кадра. На приемной стороне вновь рассчи-тывается контрольная сумма. Принятая в составе кадра и посчитан-ная на приемной стороне контрольные суммы должны совпадать, в противном случае кадр считается принятым неверно.
Для обеспечения прозрачности по кодам перед каждым символом, встречающимся внутри информационного блока, совпадающим по виду со служебным, передается символ DLE.
SYN |
SYN |
SOH |
Заголовок |
STX |
Поле данных |
ETX или ETB |
BCC |
1 байт |
1 байт |
1 байт |
|
1 байт |
|
1 байт |
|
Рис. 13.1. Формат кадра BSC
SYN - синхросимвол (СИН); SON - начало заголовка (НЗ); STX -начало текста (НТ); ЕТХ - конец текста (КТ); ЕТВ - конец блока (КБ); ВСС - контрольная сумма
На приемной стороне он автоматически удаляется. Описанная процедура позволяет на прием-ном конце различать действительно служебные символы и символы, совпадающие по виду со служебными, встречающимися в информа-ционном блоке в поле данных. Если бы внутри информационного блока был принят, например, символ «конец текста» или «конец бло-ка», прием кадра прекратился бы преждевременно и, следовательно, данный кадр был бы принят неверно.
Особенность этого протокола - работа его только в режиме пооче-редной двухсторонней передачи.
Рассмотрим еще один вариант байт-ориентированного протокола, принципиально отличающегося от BSC методом обеспечения про-зрачности по кодам.
2. Байт-ориентированный протокол DDCMP (Digital Data Com-munication Message Protocol) разработан в фирме Digital Equipment Corporation (DEC). Формат кадра протокола приведен на рис. 13.2.
Допускаются синхронный и асинхронный способы передачи ин-формации.
Перед началом передачи любая из станций должна послать «за-прос» и получить на него «подтверждение», после чего информация передается в виде нумерованных блоков, т.е. каждый передаваемый блок имеет свой номер.
Протокол предусматривает подтверждение 255 ранее принятых пронумерованных сообщений одной операцией.
SYN |
SYN |
SOH |
Счетчик |
Ответ |
ПН |
Адрес |
CRC1 |
Инфор-мация |
CRC2 |
Рис. 13.2. Формат кадра DDCMP
ПН - последовательный номер сообщения; CRC1, CRC2 - прове-рочные контрольные суммы
Для выявления ошибок используются две контрольные суммы (1-я защищает заголовок, 2-я - информационный блок). Выявление ошибок влечет за собой посылку сообщения с признаком NAK (НЕТ) в передающий узел, при этом указывается также последова-тельный номер последнего правильно принятого сообщения. Оши-бочное сообщение с целью повторной передачи ставится в оче-редь готовых для передачи сообщений. Если в течение некоторого времени не получен положительный ответ от приемника, то произ-водится повторная передача предыдущего блока.