ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2024
Просмотров: 264
Скачиваний: 0
СОДЕРЖАНИЕ
Часть I. Способы передачи сообщений
1.1 Спектры периодических сигналов
1.2. Спектры непериодических сигналов
1.3. Сигналы электросвязи и их спектры
2.1. Принципы передачи сигналов электросвязи
3.1. Понятие о цифровых сигналах
3.2. Дискретизация аналоговых сигналов
3.3. Квантование и кодирование
3.4. Восстановление аналоговых сигналов
Глава 4. Принципы многоканальной передачи
4.1. Одновременная передача сообщений
4.2. Частотное разделение каналов
4.3. Временное разделение каналов
Глава 5. Цифровые системы передачи
5.1. Формирование группового сигнала
6.3. Регенерация цифровых сигналов
5.4. Помехоустойчивое кодирование
6.1. Плезиохронная цифровая иерархия
6.2. Синхронная цифровая иерархия
7.3. Волоконно-оптические кабельные линии
8.1. Предпосылки создания транспортных сетей
8.2. Системы передачи для транспортной сети
Vc низшего порядка (Low order vc, lovc)
Vc высшего порядка (High order vc, hovc)
8.3. Модели транспортных сетей
8.4. Элементы транспортной сети
8.5. Архитектура транспортных сетей
Часть II. Службы электросвязи. Телефонные службы и службы документальной электросвязи
Глава 9. Основные понятия и определения
9.1. Информация, сообщения, сигналы
9.2. Системы и сети электросвязи
9.3. Эталонная модель взаимосвязи открытых систем
9.4. Методы коммутации в сетях электросвязи
9.5 Методы маршрутизации в сетях электросвязи
Т а б л и ц а 9.2. Устройства, реализующие функции маршрутизации
10.1. Услуги, предоставляемые общегосударственной системой автоматизированной телефонной связи
10.3. Расчет коммутационного узла с коммутацией каналов 10.3.1. Модель коммутационного узла
10.3.1 Модель коммутационного узла
10.3.2. Структура коммутационных полей станций и узлов
10.3.3. Элементы теории телетрафика
11.2. Направления развития телеграфной связи
Глава 12. Службы пд. Защита от ошибок и преобразование сигналов
12.2. Сигналы и виды модуляции, используемые в современных модемах
13.1. Компьютеры — архитектура и возможности
13.2. Принципы построения компьютерных сетей
13.3. Международные стандарты на аппаратные и программные средства компьютерных сетей
13.4. Сетевые операционные системы
13.5. Локальные компьютерные сети
13.6. Глобальные компьютерные сети
13.7. Телефонная связь по компьютерным сетям
14.1. Основы факсимильной связи
14.2. Организация факсимильной связи
Глава 15. Другие службы документальной электросвязи
Глава 16. Единая система документальной электросвязи
16.1. Интеграция услуг документальной электросвязи [1]
16.2. Назначение и основные принципы построения служб обработки сообщений [2]
16.3. Многофункциональные терминалы
Глава 17. Обеспечение информационной безопасности в телекоммуникационных системах
17.2. Правовые и организационные аспекты информационной безопасности
17.3. Технические аспекты информационной безопасности
Часть III. Интеграция сетей и служб электросвязи
Глава 18. Узкополосные цифровые сети интегрального обслуживания (у-цсио)
18.1. Пути перехода к узкополосной цифровой сети интегрального обслуживания
18.2. Службы и услуги узкополосной цсио
18.3. Система управления у-цсио
Глава 19. Широкополосные и интеллектуальные сети
19.1. Условия и этапы перехода к широкополосной сети интегрального обслуживания (ш-цсио)
19.3. Способы коммутации в ш-цсио
19.4. Построение коммутационных полей станций ш-цсио
19.5. Причины и условия перехода к интеллектуальной сети (ис)
Глава 20. Система межстанционной сигнализации по общему каналу в цсио
20.1. Понятие об общем канале сигнализации
20.2. Протоколы системы сигнализации № 7 itu-t
20.3. Способы защиты от ошибок в окс № 7
20.5. Способы построения сигнальной сети
Глава 21. Широкополосные сети и оборудование компании «Huawei Technologies Co, Ltd»
21.1. Оптическая сеть абонентского доступа с интеграцией услуг honet
21.2. Построение транспортных сетей на базе оборудования компании «Huawei Technologies Co., Ltd»
21.3. Цифровая коммутационная система с программным управлением с&с08
21.4. Высокоскоростной коммутирующий маршрутизатор Radium 8750
Часть IV. Современные методы управления в телекоммуникациях
22.1. Многоуровневое представление задач управления телекоммуникациями
22.2. Функциональные группы задач управления
Глава 23. Интегрированные информационные системы управления предприятиями электросвязи
23.1. Понятия и определения в области информационных систем управления предприятием
Глава 24. Управление услугами. Качество предоставляемых услуг
24.1. Система качества услуг электросвязи
24.2. Базовые составляющие обеспечения качества услуги
24.3. Оценка качества услуг связи с точки зрения пользователя и оператора связи
Глава 25. Управление услугами.
25.3. Централизованный способ построения системы расчетов
25.4. Интеграция аср с системами управления tmn
25.5. Основные технические требования для аср
25.6. Обзор автоматизированных систем расчетов
Глава 26. Управление сетями и сетевыми элементами
26.1. Архитектура систем управления сетями и сетевыми элементами
26.2. Системы управления первичными и вторичными сетями
26.3. Принципы построения системы управления
Глава 27. Решения компании strom telecom в области tmn (Foris oss)
27.1. Общая характеристика семейства продуктов Foris oss
27.2. Автоматизация расчетов. Подсистема TelBill
27.3. Многофункциональные подсистемы сбора данных и взаимодействия с атс
27.4. Подсистема сбора данных и их биллинговой предобработки TelCharge
27.5. Подсистемы TelRes, TelTe, TelRc
27.6. Система «Электронный замок»
27.7. Подсистема поддержки клиентов tccs (Foris Customer Care Systems)
1) физический; 2) канала связи; 3) сетевой.
Протоколы транспортного уровня. Сетевой уровень предостав-ляет услуги транспортному, который требует от пользователей запро-са на качество обслуживания сетью.
После получения от пользователя запроса на качество обслужи-вания транспортный уровень выбирает класс протокола, который обеспечивает требуемое качество обслуживания.
Качество обслуживания сети зависит от ее типа, доступного ко-нечному пользователю, а также от транспортного уровня.
МСЭ-Т, ISO, ECMA определяют три типа сетей:
а) сети, обеспечивающие приемлемые уровни ошибок и сигнали-зации об ошибках (приемлемое качество);
б) сети, обеспечивающие приемлемый уровень ошибок и неприем-лемо слабую сигнализацию об ошибках;
с) сетевые соединения, представляющие неприемлемый уровень ошибок для пользователя (ненадежные сети).
При существовании разных типов сетей транспортный уровень по-зволяет установить следующие параметры качества обслуживания:
1) пропускная способность;
2) надежность сети;
3) задержка передачи информации через сеть;
4) приоритеты;
5) защита от ошибок;
6) мультиплексирование;
7) управление потоком;
8) обнаружение ошибок;
Транспортный уровень отвечает за выбор соответствующего протокола, обеспечивающего требуемое качество обслуживания на сети [6].
Примером протоколов транспортного уровня могут служить прото-кол МСЭ-Т (МККТТ) Х.224 - «Спецификация протокола транспортного уровня взаимосвязи открытых систем для применения МККТТ» [13] и стандарт ISO 8073 «Системы обработки информации. Взаимосвязь открытых систем. Спецификация протоколов транспортного уровня».
Протоколы верхних уровней. К верхним уровням относят прото-колы сеансового, представительного и прикладного уровней.
Сеансовый уровень. Здесь производится организация способов взаимодействия между прикладными процессами пользователей, т.е. управление взаимодействием между открытыми системами. В каче-стве примеров протоколов сеансового уровня можно рассматривать стандарт Х.225 - «Спецификация протокола сеансового уровня взаи-мосвязи открытых систем для применений МККТТ» [14], разработан-ный МСЭ-Т и стандарт ISO 8327 «Системы обработки информации. Взаимосвязь открытых систем. Базовая спецификация протокола се-ансового уровня, ориентированная на соединение».
Представительный уровень. Определяет синтаксис передавае-мой информации, т.е. набор знаков и способы их представления, ко-торые являются понятными для всех взаимодействующих систем. Это процесс согласования различных кодов, согласно ему взаимодейст-вующие системы договариваются о той форме, в которой будет пере-даваться информация. Примером протоколов представительного уровня являются: Х.226 «Спецификация протокола уровня представ-ления взаимосвязи открытых систем для применения МККТТ» [15] и стандарт ISO 8823 «Системы обработки информации. Взаимосвязь открытых систем. Спецификация протоколов уровня представления в режиме управления соединением».
Прикладной уровень. Определяет семантику, т.е. смысловое со-держание информации, которой обмениваются открытые системы. Примером стандарта прикладного уровня может служить стандарт МСЭ-Т Х.400.
Особенности стандартизации протоколов для локальных се-тей. Особенностью стандартов, разрабатываемых для локальных сетей, является предложенная комитетом IEEE-802 [17] архитектура нижних уровней локальных вычислительных сетей (см. рис. 13.5) в сопоставлении с уровнями эталонной модели взаимодействия открытых систем [18].
Рис. 13.5. Архитектура нижних уровней локальный сетей в сопоставлении с архитектурой эталонной модели взаимодействия открытых систем:
LLC (Logical link control) - подуровень управления логическим каналом; MAC (Medium access control) - подуровень управления доступом к среде передачи; PHY (Physical) - сризический уровень; MS (Man-agement station) - уровень управления станцией
Эта особенность заключается в том, что канальному уровню модели ISO соответствуют два подуровня модели IEEE-802, а именно: MAC, определяющий метод доступа к среде передачи и LLC [21], обеспечивающий управление логическим каналом. Реали-зация уровней выше второго принципиальных отличий не имеет, будь то локальные сети или глобальные.
Сопоставительный анализ протокольных стеков. Существую-щие сетевые архитектуры, будь то стандарты, разработанные между-народными комитетами, или наборы протоколов, созданные фирма-ми-производителями оборудования для компьютерных сетей, отли-чаются друг от друга и имеют свою область применения.
Одним из существенных критериев, используемых для сопостави-тельного анализа, можно считать охват сетью определенной террито-рии. Деление сетей по этому признаку предполагает сети трех типов: глобальные, региональные и локальные. Часто используемый термин корпоративные сети можно отнести к глобальным или к локальным в зависимости от их размеров.
Реально существующие наборы протоколов сетевых архитектур (протокольные стеки) можно разбить на две группы: для глобальных и для локальных сетей. В табл. 13.1 представлены сетевые архитекту-ры глобальных сетей общего пользования [16].
Таблица 13.1. Сетевые архитектуры для глобальных сетей
Уровни ЭМВОС |
Стандарты |
||
X.200 МСЭ-Т (МККТТ) |
ISO (MOC) |
TCP/IP |
|
Прикладной |
X.400 |
X.400 |
SMTP, TELNET, FTP, TFTP |
Представительный |
X.226 |
ISO 8823 |
|
Сеансовый |
X.225 |
ISO 8327 |
TCP, UDP |
Транспортный |
X.224 |
ISO 8073 |
|
Сетевой |
X.25, X.75 |
X.25, X.75 |
IP, IPng |
Канальный |
LAPB |
LAPB |
|
Физический |
- |
- |
- |
Протокольные стеки МККТТ и ISO включают полные наборы про-токолов от канального до прикладного уровня, которые на всех уровнях ориентированы на соединение, т.е. на каждом уровне меж-ду двумя подсистемами устанавливается логическая связь, благо-даря которой происходит передача данных. При этом сохраняются целостность и порядок их следования. При искажении порции данных происходят их перезапрос и повторная передача. Последнее приводит к существенным затратам сетевых ресурсов, но является неизбежным для глобальных сетей в условиях применения каналов низкого качества.
В стеке TCP/IP используются следующие протоколы:
1. SMTP (Simple Mail Transfer Protocol) - протокол электронной почты;
2. TELNET - протокол эмуляции терминала;
3. FTP (File Transfer Protocol) - протокол передачи файлов;
4. TFTP (Trivial File Transfer Protocol) - простой протокол передачи файлов;
5. TCP (Transmission Control Protocol) - протокол управления переда-чей обеспечивает сервис надежной доставки информации между пользователями;
6. UDP (User Datagram Protocol) - пользовательский дейтаграммный протокол обеспечивает негарантированную доставку пакетов без установления соединения между клиентами;
7. IP (Internet Protocol) - межсетевой протокол обеспечивает доставку между узлами;
8. IPng (Internet Protocol new generation) - межсетевой протокол ново-го поколения с усовершенствованной системой адресации. Сетевые архитектуры локальных сетей представлены в табл. 13.2. Физический и подуровень доступа к среде передачи как часть ка-нального уровня эталонной модели взаимодействия открытых систем в локальных сетях реализуются с помощью OLI (Open Link Interface), включающего драйверы для различных типов локальных сетей, на-пример, Ethernet, Token Ring и др.
Таблица 13.2. Сетевая архитектура на примере протоколов фирмы Novell
Уровни ЭМВОС |
Протоколы фирмы Novell |
TCP/IP |
Прикладной |
NCP |
SMTP, TELNET, FTP, TFTP |
Представительный |
||
Сеансовый |
NetBIOS |
TCP, UDP |
Транспортный |
SPX |
|
Сетевой |
IPX |
IP, IPng |
Канальный |
- |
- |
Физический |
- |
- |
Протоколы, расположенные над OLI, в случае стека протоколов фирмы NOVELL выполняют следующие функции:
сетевой уровень IPX (Internal Packet Exchange) так же, как и IP обес-печивает дейтаграммный обмен пакетами, но отличается от IP тем, что использует для адресации адреса сетевых контроллеров;
транспортный уровень SPX (Sequenced Packet Exchange) гаранти-рует правильность передачи пакетов;
протокол NCP (NetWare Core Protocol) охватывает функции прото-колов верхних уровней.
Протокольный стек NOVELL заменяется на набор протоколов TCP/IP путем перезагрузки программ без каких-либо изменений в ап-паратных средствах сети. После перезагрузки сеть будет работать с использованием протоколов TCP/IP.