Файл: Основы автоматизации производства.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.07.2024

Просмотров: 606

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

А.Г. Староверов основы автоматизации производства

Глава 1. Общие сведения о системах автоматики и составляющих ее элементах

1. Основные понятия и определения

2. Классификация систем автоматического управления

3. Элементы автоматических систем

Глава 2. Первичные преобразователи

1. Общие сведения и классификация первичных преобразователей

2. Потенциометрические первичные преобразователи

3. Индуктивные первичные преобразователи

4. Емкостные первичные преобразователи

5. Тензометрические первичные преобразователи

6. Фотоэлектрические первичные преобразователи

Глава 3. Усилители и стабилизаторы

2. Электромеханические и магнитные усилители

3. Электронные усилители

5. Стабилизаторы

Глава 4. Переключающие устройства и распределители

1. Электрические реле

2. Реле времени

3. Контактные аппараты управления

4. Бесконтактные устройства управления

Наименование н обозначение логических функций н элементов

5. Вспомогательные устройства

Глава 5. Задающие и исполнительные устройства

1. Классификация задающих и исполнительных устройств

2. Задающие устройства

3. Электрические исполнительные механизмы

Раздел II. Контрольно-измерительные приборы и техника измерения параметров технологических процессов

Глава 6. Общие сведения об измерении и контроле

1. Основные метрологические понятия техники измерения и контроля

2. Погрешности измерений

3. Методы измерения и классификация. Контрольно-измерительных приборов

Глава 7. Контроль температуры

1. Температурные шкалы. Классификация технических приборов и устройств измерения температуры

2. Термометры расширения

Технические характеристики стеклинных ртутных, термометров типа тт

Технические характеристики дилатометрических гермометров

3. Манометрические термометры

Характеристики манометрических термометров

4. Термоэлектрические термометры

Основные характеристики термоэлектрических термометров

Технические характеристики милливольтметров

5. Термометры сопротивления и термисторы

Технические характеристики термометров сопротивления

6. Бесконтактное измерение температуры

7. Техника безопасности при контроле температуры

Глава 8. Контроль давления и разрежения

1. Общие сведения и классификация приборов

2. Манометры

Технические характеристики показывающих и сигнализирующих манометров

3. Тягонапоромеры

Технические характеристики тягомеров, напоромеров и тягонапоромеров

4. Вакуумметры

Технические характеристики промышленных вакуумметров

5. Техника безопасности при контроле давления

Глава 9. Контроль расхода, количества и уровня

1. Общие сведения и классификация приборов

2. Расходомеры

Технические характеристики ротаметров

Технические характеристики шариковых расходомеров

3. Счетчики жидкостей и газов

Технические характеристики счетчиков жидкостей и газов

4. Счетчики и весы твердых и сыпучих материалов

5. Уровнемеры жидкостей и сыпучих материалов

Технические характеристики поплавковых уровнемеров с пружинным уравновешиванием

Технические характеристики буйковых уровнемеров

6. Техника безопасности при контроле расхода, количества и уровня

Глава 10. Контроль специальных параметров

1. Контроль состава газа

2. Контроль влажности и запыленности газа

3. Контроь влажности сыпучих материалов

4. Контроль плотности жидкости

5. Техника безопасности при контроле специальных параметров

Раздел III. Автоматическое управление, контроль и регулирование

Глава 11. Системы автоматики с программным управлением

1. Общие принципы построения систем

2. Интуитивный метод разработки схем управления

3. Аналитический метод разработки схем управления

Глава 12. Автоматическая блокировка и защита в системах управления

1. Системы автоматической блокировки

2. Системы автоматической защиты

Глава 13. Системы автоматического контроля и сигнализации

1. Структура и виды систем

2. Измерительные системы с цифровым отсчетом

3. Системы централизованного контроля

4. Системы автоматической сигнализации

Глава 14. Системы автоматического регулирования

1. Основные понятия и определения

2. Обыкновенные системы регулирования

3. Самонастраивающиеся системы регулирования

4. Качественные показатели автоматического регулирования

Глава 15. Объекты регулирования и их свойства

1. Общие сведения

2. Параметры объектов регулирования

3. Определение основных свойств объектов

Глава 16. Типы регуляторов

1. Классификация автоматических регуляторов

2. Регуляторы прерывистого (дискретного) действия

3. Регуляторы непрерівного действия

4. Выбор типа регуляторов и параметров его настройки

Формулы для определения параметров настройки регуляторов

Глава 17. Конструкции и характеристики регуляторов

1. Регуляторы прямого действия

2. Электрические регуляторы косвенного действия

3. Гидравлические регуляторы косвенного действия

4. Пневматические регуляторы косвенного действия

5. Техника безопасности при эксплуатации регуляторов

Раздел IV. Микропроцессорные системы

Глава 18. Общая характеристика микропроцессорных систем

1. Основные понятия и определения

2. Организация работы вычислительной машины

3. Производство эвм

4. Структура эвм

Глава 19. Математическое и программное обеспечение микроЭвм

1. Системы счисления

2. Правила перевода одной системы счисления в другую

3. Формы представления чисел в эвм. Машинные коды

4. Основы программирования

Глава 20. Внешние устройства микроЭвм

1. Классификация внешних устройств

2. Внешние запоминающие устройства

3. Устройства для связи эвм – оператор

4. Внешние устройства связи эвм с объектом

Глава 21. Применение микропроцессорных систем

1. Состав систем автоматики с применением микроЭвм

2. Управление производственными процессами

Раздел V. Промышленные роботы и роботизированные системы

Глава 22. Общие сведения о промышленных роботах

1. Основные определения и классификация промышленных роботов

2. Структура промышленных роботов

3. Основные технические показатели роботов

Глава 23. Конструкции промышленных роботов

1. Промышленные роботы агрегатно-модульного типа

Технические данные агрегатной гаммы промышленных роботов лм40ц.00.00 [9]

Технические характеристики и области обслуживания типового ряда промышленных роботов [9]

Технические данные модулей агрегатной гаммы рпм-25 [9]

2. Интерактивные промышленные роботы

3. Адаптивные промышленные роботы

4. Захватные устройства

5. Приводы промышленных роботов

Глава 24. Системы управления промышленными роботами

1. Назначение и классификация систем управления

2. Унифицированные системы управления

Технические данные унифицированных систем управления уцм [9]

Технические данные унифицированных систем управления упм [9]

Технические данные контурных систем управления укм [9]

3. Информационные системы

Глава 25. Роботизация промышленного производства

1. Основные типы роботизированных систем

2. Гибкие производственные системы с применением промышленных роботов

3. Техника безопасности при эксплуатации роботов

Приложение Буквенные обозначения элементов электрических схем

Список литературы

Для многофункциональных ПР, решающих разнообразные производственные задачи, в ряде случаев требуется комбинированное (контурное и позиционное) управление. Подобные системы управления должны быть универсальными и обеспечивать задание геометрической информации и в абсолютных значениях, и в приращениях, а также иметь возможность адаптивного управления с учетом информации, поступающей извне.

Таблица 23


Технические данные контурных систем управления укм [9]

Характеристика

УКМ-552

УКМ-772

Число программируемых координат

5

7

Измерительный преобразователь

Потенциометр

СП4

Кодовый

датчик

Число команд:

технолoгических

8

32

от внешнего оборудования

8

8

Число двоичных разрядов для обработки геометрической информации

16

16

Точность позиционирования, ед. дискретности

±1

±1

Привод

Следящий

Метод программирования

Обучение

Интерполяция

Линейная

Система числового программного управления С85. Создана на базе встроенной ЭВМ со свободным программированием и обеспечивает комбинированное управление с возможностью адаптации к внешней среде. В основе системы используется микроЭВМ «Электроника-60».

Система обеспечивает: управление восемью координатами; позиционирование с остановкой по сигналам датчиков; обработку программы с обращением к подпрограммам; покадровую отработку программы; оперативную коррекцию скоростей и перемещений; развитую систему индикации, включая индикацию текущего кадра, отработку перемещений, кодов ошибок; редактирование управляющих программ с выводом информации на дисплей; текстовый контроль функционирования. Перемещения задаются как в абсолютных значениях, так и в приращениях.


В базовый комплект системы входят процессор, таймер, пульт управления, блок сопряжения с роботом, блок ввода-вывода данных, блок питания, запоминающее устройство. В состав дополнительных устройств входят дисплей, перфоратор, устройство вывода на печать, внешнее запоминающее устройство.

3. Информационные системы

Кроме рассмотренных систем управления ПР оснащаются информационными системами, в значительной мере определяющими их функциональные возможности, сложность решения задач и эффективность использования. Информационные системы используются также для обеспечения безопасности обслуживающего персонала. В зависимости от выполняемых функций информационные системы разделяются на системы восприятия информации о внешней среде, системы контроля состояния ПР и системы обеспечения техники безопасности.

Системы восприятия информации о внешней среде. Они подразделяются на визуальные, локационные системы и системы искусственного осязания.

В визуальных системах для получения зрительного изображения чаще всего используются устройства монокулярного или бинокулярного искусственного зрения. В качестве датчиков применяют видиконы (передающие телевизионные трубки), фотоматрицы (наборы фотоэлементов) и т. и., управляемые от ЭВМ. С помощью этих систем определяют местоположение объекта по отношению к руке робота, контролируют наличие объекта в захватных устройствах или проводят классификацию по форме простых объектов.

Роботы с визуальными системами пока получили недостаточное распространение, что объясняется в основном длительностью времени обработки информации.

Локационные системы условно можно разделить на две группы: системы дальней и системы ближней локации рабочего пространства. Первые могут быть построены с использованием ультразвуковых, лазерных и светолокационных оптических систем.

Ультразвуковые дальномеры позволяют измерять расстояния до объекта в диапазоне до 2 м с погрешностью 2 %. Точность определения угловых координат (т. е. положения объекта) у ультразвуковых дальномеров значительно ниже, поскольку облучается большая часть поверхности предмета, что затрудняет выделение его локального участка для измерения. Поэтому ультразвуковые дальномеры используют для обнаружения объекта и грубого определения его положения в пространстве.

Локационные устройства на основе лазерных излучателей определяют пространственное положение объектов с весьма высокой точностью. Однако подобные устройства не находят широкого применения на практике. Это объясняется сложностью аппаратуры, большими габаритными размерами и высокой стоимостью.


Широкое применение могут найти светолокационные системы. В них рабочее пространство «ощупывается» световыми или инфракрасными лучами. В качестве излучателей используются лампы накаливания, светодиоды и другие излучающие свет приборы, в качестве приемников – различные конструкции с использованием фотодиодов и фоторезисторов. Точность определения расстояния с помощью светолокационных систем может достигать 2 мм на расстоянии до 2 м.

Системы ближней локации могут быть построены и на основе индукционных, магнитных и струйных преобразователей (датчиков). Наилучшими эксплуатационными характеристиками среди них обладают струйные преобразователи, действие которых основано на взаимодействии потока сжатого воздуха, вытекающего из сопла, с предметом локации. Недостатком струйных преобразователей является необходимость применения пневмоэлектрических преобразователей входного сигнала в электрический сигнал.

Общим недостатком дистанционных преобразователей, применяемых в локационных системах, является зависимость выходных сигналов от отражательной способности, неровности поверхности и материала исследуемых предметов; кроме того, исследуемая поверхность должна быть перпендикулярна световому лучу или воздушному потоку. Более универсальное применение имеют преобразователи, работающие на просвет (например, для контроля наличия объекта в захватном устройстве).

Особенностью работы систем искусственного осязания является наличие контакта датчиков с поверхностью объекта. С их помощью могут быть решены следующие задачи: поиск и обнаружение предметов, определение их положения; распознавание формы и их классификация; определение параметров объектов (масса, твердость, температура, теплопроводность и электропроводность и т. п.); контроль за микроперемещениями деталей при выполнении некоторых сборочных операций; контроль смещений объекта в захватном устройстве робота при воздействии на него динамических нагрузок.

Простейшими первичными преобразователями искусственного осязания являются тактильные преобразователи контактного типа. Они располагаются на наружных и внутренних поверхностях захватного устройства робота. В качестве чувствительных элементов используют микропереключатели и электропроводящие полимеры. Такие преобразователи рекомендуются для решения задачи контроля наличия детали в захватном устройстве, правильности ее центрирования, а также для поиска и распознавания пространственно не ориентированных предметов.


Контактные преобразователи могут быть объединены в матрицы. Это позволяет упростить определение ориентации объекта в пространстве, получить информацию о зоне контакта между захватным устройством манипулятора и удерживаемым объектом.

При использовании матриц следует учитывать ряд факторов. При низкой плотности расположения преобразователей в матрице могут быть применены микропереключатели, реле и т. д. Более высокие функциональные возможности ПР обеспечиваются при использовании матриц из пропорциональных преобразователей, которые применяют в основном для решения задачи классификации и определения формы объектов манипулирования.

Преобразователи усилия (моментов) применяют в роботах, осуществляющих манипулирование хрупкими и легкодеформируемыми предметами или выполняющих простые операции сборки. В первом случае преобразователи усилий позволяют регулировать усилие захвата пропорционально массе захватываемых объектов.

Для измерения усилий применяют два способа, по упругой деформации чувствительного элемента и по перемещению подвижной части чувствительного элемента.

Системы контроля состояния ПР. Обеспечивают требуемые эксплуатационные характеристики, включая надежность роботов, и участвуют в организации требуемых параметров движения. В силу этого системы контроля состояния ПР должны содержать: систему оценки положения ц скорости движений робота, обеспечивающую регистрацию фактического его состояния в каждый момент времени и сравнение с требуемыми параметрами движения; систему аварийной блокировки, обеспечивающую предотвращение поломок как механической системы ПР, так и обслуживаемого им технологического оборудования при появлении случайных сбоев; систему диагностики и прогнозирования ресурса роботов, предназначенную для сокращения времени восстановления их работоспособности и уменьшения числа отказов путем проведения соответствующих профилактических работ.

Система оценки положения и скорости перемещения узлов и механизмов является специализированной для конкретного типа ПР.

Основными требованиями, предъявляемыми к преобразователям таких систем, являются надежность, малые габаритные размеры и масса, помехоустойчивость к воздействию окружающей среды, простота юстировки, возможность отсчета абсолютных значений и низкая стоимость.

Для ПР со следящим приводом в состав системы входят первичные преобразователи положения и скорости перемещения отдельных степеней подвижности. В качестве преобразователей скорости применяют серийно выпускаемые тахогенераторы ТД-103, ПТ-1, ТП-11 либо двигатели постоянного тока серии ДПМ. В качестве первичных преобразователей положения используют проволочные потенциометры, индуктивные и индукционные преобразователи типа вращающихся трансформаторов.