Файл: Основы автоматизации производства.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.07.2024

Просмотров: 658

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

А.Г. Староверов основы автоматизации производства

Глава 1. Общие сведения о системах автоматики и составляющих ее элементах

1. Основные понятия и определения

2. Классификация систем автоматического управления

3. Элементы автоматических систем

Глава 2. Первичные преобразователи

1. Общие сведения и классификация первичных преобразователей

2. Потенциометрические первичные преобразователи

3. Индуктивные первичные преобразователи

4. Емкостные первичные преобразователи

5. Тензометрические первичные преобразователи

6. Фотоэлектрические первичные преобразователи

Глава 3. Усилители и стабилизаторы

2. Электромеханические и магнитные усилители

3. Электронные усилители

5. Стабилизаторы

Глава 4. Переключающие устройства и распределители

1. Электрические реле

2. Реле времени

3. Контактные аппараты управления

4. Бесконтактные устройства управления

Наименование н обозначение логических функций н элементов

5. Вспомогательные устройства

Глава 5. Задающие и исполнительные устройства

1. Классификация задающих и исполнительных устройств

2. Задающие устройства

3. Электрические исполнительные механизмы

Раздел II. Контрольно-измерительные приборы и техника измерения параметров технологических процессов

Глава 6. Общие сведения об измерении и контроле

1. Основные метрологические понятия техники измерения и контроля

2. Погрешности измерений

3. Методы измерения и классификация. Контрольно-измерительных приборов

Глава 7. Контроль температуры

1. Температурные шкалы. Классификация технических приборов и устройств измерения температуры

2. Термометры расширения

Технические характеристики стеклинных ртутных, термометров типа тт

Технические характеристики дилатометрических гермометров

3. Манометрические термометры

Характеристики манометрических термометров

4. Термоэлектрические термометры

Основные характеристики термоэлектрических термометров

Технические характеристики милливольтметров

5. Термометры сопротивления и термисторы

Технические характеристики термометров сопротивления

6. Бесконтактное измерение температуры

7. Техника безопасности при контроле температуры

Глава 8. Контроль давления и разрежения

1. Общие сведения и классификация приборов

2. Манометры

Технические характеристики показывающих и сигнализирующих манометров

3. Тягонапоромеры

Технические характеристики тягомеров, напоромеров и тягонапоромеров

4. Вакуумметры

Технические характеристики промышленных вакуумметров

5. Техника безопасности при контроле давления

Глава 9. Контроль расхода, количества и уровня

1. Общие сведения и классификация приборов

2. Расходомеры

Технические характеристики ротаметров

Технические характеристики шариковых расходомеров

3. Счетчики жидкостей и газов

Технические характеристики счетчиков жидкостей и газов

4. Счетчики и весы твердых и сыпучих материалов

5. Уровнемеры жидкостей и сыпучих материалов

Технические характеристики поплавковых уровнемеров с пружинным уравновешиванием

Технические характеристики буйковых уровнемеров

6. Техника безопасности при контроле расхода, количества и уровня

Глава 10. Контроль специальных параметров

1. Контроль состава газа

2. Контроль влажности и запыленности газа

3. Контроь влажности сыпучих материалов

4. Контроль плотности жидкости

5. Техника безопасности при контроле специальных параметров

Раздел III. Автоматическое управление, контроль и регулирование

Глава 11. Системы автоматики с программным управлением

1. Общие принципы построения систем

2. Интуитивный метод разработки схем управления

3. Аналитический метод разработки схем управления

Глава 12. Автоматическая блокировка и защита в системах управления

1. Системы автоматической блокировки

2. Системы автоматической защиты

Глава 13. Системы автоматического контроля и сигнализации

1. Структура и виды систем

2. Измерительные системы с цифровым отсчетом

3. Системы централизованного контроля

4. Системы автоматической сигнализации

Глава 14. Системы автоматического регулирования

1. Основные понятия и определения

2. Обыкновенные системы регулирования

3. Самонастраивающиеся системы регулирования

4. Качественные показатели автоматического регулирования

Глава 15. Объекты регулирования и их свойства

1. Общие сведения

2. Параметры объектов регулирования

3. Определение основных свойств объектов

Глава 16. Типы регуляторов

1. Классификация автоматических регуляторов

2. Регуляторы прерывистого (дискретного) действия

3. Регуляторы непрерівного действия

4. Выбор типа регуляторов и параметров его настройки

Формулы для определения параметров настройки регуляторов

Глава 17. Конструкции и характеристики регуляторов

1. Регуляторы прямого действия

2. Электрические регуляторы косвенного действия

3. Гидравлические регуляторы косвенного действия

4. Пневматические регуляторы косвенного действия

5. Техника безопасности при эксплуатации регуляторов

Раздел IV. Микропроцессорные системы

Глава 18. Общая характеристика микропроцессорных систем

1. Основные понятия и определения

2. Организация работы вычислительной машины

3. Производство эвм

4. Структура эвм

Глава 19. Математическое и программное обеспечение микроЭвм

1. Системы счисления

2. Правила перевода одной системы счисления в другую

3. Формы представления чисел в эвм. Машинные коды

4. Основы программирования

Глава 20. Внешние устройства микроЭвм

1. Классификация внешних устройств

2. Внешние запоминающие устройства

3. Устройства для связи эвм – оператор

4. Внешние устройства связи эвм с объектом

Глава 21. Применение микропроцессорных систем

1. Состав систем автоматики с применением микроЭвм

2. Управление производственными процессами

Раздел V. Промышленные роботы и роботизированные системы

Глава 22. Общие сведения о промышленных роботах

1. Основные определения и классификация промышленных роботов

2. Структура промышленных роботов

3. Основные технические показатели роботов

Глава 23. Конструкции промышленных роботов

1. Промышленные роботы агрегатно-модульного типа

Технические данные агрегатной гаммы промышленных роботов лм40ц.00.00 [9]

Технические характеристики и области обслуживания типового ряда промышленных роботов [9]

Технические данные модулей агрегатной гаммы рпм-25 [9]

2. Интерактивные промышленные роботы

3. Адаптивные промышленные роботы

4. Захватные устройства

5. Приводы промышленных роботов

Глава 24. Системы управления промышленными роботами

1. Назначение и классификация систем управления

2. Унифицированные системы управления

Технические данные унифицированных систем управления уцм [9]

Технические данные унифицированных систем управления упм [9]

Технические данные контурных систем управления укм [9]

3. Информационные системы

Глава 25. Роботизация промышленного производства

1. Основные типы роботизированных систем

2. Гибкие производственные системы с применением промышленных роботов

3. Техника безопасности при эксплуатации роботов

Приложение Буквенные обозначения элементов электрических схем

Список литературы

5. Техника безопасности при эксплуатации регуляторов

Основными автоматическими регуляторами, применяемыми в литейных и термических цехах, являются электрически регуляторы, поэтому общим требованием безопасности их эксплуатации является отключение питающих электрических цепей, а также обеспечение каждого электрического регулятора средством самостоятельной защиты при коротком замыкании или замыкании на корпус.

Пневматические и гидравлические регуляторы давления должны быть оборудованы взрывными (предохранительными клапанами. Эти клапаны должны безотказно открываться при заданном давлении, обладать необходимой пропускной способностью и минимальным временем срабатывания и автоматически закрываться после окончания процесса сброса. Давление срабатывания взрывного клапана не должно превышать рабочее давление в 1,5 раза.

Все регуляторы должны также обеспечивать при отключении энергии, потребляемой исполнительными механизмами, или при отказах автоматики перестроение регулирующих органов в положение, обеспечивающее безопасность работы объекта регулирования. Регулирующий орган в зависимости от конструктивного исполнения и вида регулируемого процесса в случае аварии должен полностью открываться и фиксироваться в том же положении.

При эксплуатации автоматических регуляторов должны выполняться общие требования ГОСТ 12.1004–76, регулирующего условия взрывобезопасности и пожарной безопасности.

Контрольные вопросы и задания

1. Как устроен и работает регулятор типа РТД?

2. Как устроен и работает регулятор типа РП?

3. Какие регуляторы называются двухпозиционными?

4. Расскажите о различиях трехпозиционных и двухпозиционных регуляторах.

5. Как устроен и работает электрический регулятор иа базе поляризованного реле БР-3?

6. Каким образом осуществляется регулирование технологического процесса при помощи регулятора ИРМ-240?

7. Расскажите о назначении электронных регуляторов.

8. Опишите принцип работы и устройство программного регулятора РУ5.

9. Опишите принцип работы гидравлических струйных регуляторов.

10. Как устроен и работает пневматический регулятор РД?

11. Как устроен и работает пневматический регулятор типа 04?

Раздел IV. Микропроцессорные системы


Глава 18. Общая характеристика микропроцессорных систем

1. Основные понятия и определения

Развитие вычислительной техники является одним из основных факторов, определяющих прогресс развития металлургического производства. Особое внимание уделяется вводу в действие автоматизированных систем управления технологическими процессами. На вооружение металлурга приходит принципиально новая техника: быстродействующие управляющие электронноцифровые вычислительные машины, логические информационные устройства и сложные кибернетические машины.

Электронная вычислительная машина (ЭВМ) представляет собой комплекс технических средств для автоматической обработки информации. Согласно заданной программе машина автоматически реализует требуемый вычислительный процесс.

Основной частью ЭВМ является процессор. Он предназначен для логической и арифметической обработки информации, а также для автоматического управления процессом вычисления в соответствии с заданной программой. Процессор организует и отчасти осуществляет заданную в виде программы последовательность действий – процесс (откуда и название «процессор»). По назначению процессоры делят на центральные и периферийные. В однопроцессорных ЭВМ все функции вычисления и управления выполняет процессор. В многопроцессорных ЭВМ имеется центральный процессор, который реализует основной процесс обработки информации, и периферийные процессоры, выполняющие те или иные специальные функции, например управление работой внешних устройств.

МикроЭВМ является разновидностью обычной ЭВМ. Отличительная особенность микроЭВМ заключается в том, что по меньшей мере преобразование данных и управление работой ЭВМ осуществляется одной микросхемой (большой интегральной схемой – БИС), которая называется микропроцессором, т. е. микроЭВМ – это ЭВМ, выполненная на базе микропроцессора.

С момента создания первой цифровой ЭВМ существовало как бы четыре поколения ЭВМ.

ЭВМ первого поколения (1946–1960 гг.). Основным активным элементом машин первого поколения являлась электронная лампа. К машинам - этого поколения отечественного производства относятся БЭСМ-1, БЭСМ-2, «Стрела», «Урал-1», «Урал-2», «Урал-4», «Минск-1» и др.

ЭВМ второго поколения (1960–1966 гг.). В этих машинах в качестве элементной базы использовались полупроводниковые диоды и транзисторы, что позволило существенно увеличить быстродействие и надежность ЭВМ, а также емкость оперативной памяти. При этом одновременно уменьшились габаритные размеры, масса и потребляемая мощность. К машинам отечественного производства второго поколения относятся БЭСМ-4, БЭСМ-6, «Урал-14», «Урал-16», «Минск-22», «Минск-32» и др.


ЭВМ третьего поколения (1966–1977 гг.). В этих машинах элементная база обеспечивается микроэлектроникой (интегральными микросхемами). Для ЭВМ третьего поколения характерны резкое повышение быстродействия и надежности систем вычислительной техники; дальнейшее сокращение габаритных размеров и потребляемой мощности; появление новых технических средств хранения, ввода и вывода информации; диалоговое общение с ЭВМ; использование операционных систем.

К ЭВМ третьего поколения относится созданная СССР совместно со странами – членами СЭВ в 1972 г. единая система электронных вычислительных машин (ЕС ЭВМ), предназначенных для решения широкого круга научно-технических и планово-экономических задач, а также для работ в автоматизированных системах управления.

Для решения сравнительно небольших задач управления различными процессами используются ЭВМ с упрощенной системой команд, получившие название мини-ЭВМ (СМ-4, СМ-1420, СМ-1300, СМ-1800, «Электроника-100» и др.). На базе этих машин созданы измерительно-вычислительные комплексы (ИВК) для автоматизации научных исследований, технологических и других процессов, автоматизации рабочих мест (АРМ) технолога, конструктора, проектировщика и т. д.

ЭВМ четвертого поколения (с 1977 г.). Они основаны на применении БИС, в которых на одном полупроводниковом кристалле размещается до тысячи схем. Высокая степень интеграции БИС способствовала дальнейшему увеличению плотности компоновки аппаратуры, повышению ее надежности, увеличению быстродействия и снижению стоимости, а также обеспечила возможность создания нового класса ЭВМ – микроЭВМ. За сравнительно короткий срок в нашей стране было создано четыре поколения микроЭВМ. Так, широко известны «Электроника-60», ДВК‑2, ДВК‑3 и ДВК‑4, «Искра‑226».

ЭВМ пятого поколения. Для ЭВМ пятого поколения, разрабатываемых пока в лабораторных условиях, элементная база основывается на сверхбольших интегральных схемах (СБИС) и на оптико-электронных элементах. Быстродействие ЭВМ пятого поколения будет достигать сотен миллионов операций в секунду. Для преобразования и передачи оптических сигналов будут применяться лазеры, светоизлучающие диоды, световоды и различные фотоприемники.

Единицы информации. К машинным единицам информации, участвующим в цифровых и логических преобразованиях, относятся бит, байт, слово, запись, блок и файл. К натуральным единицам информации относятся разряд, символ, поле, запись и массив.


Бит – наименьшая единица информации, один разряд машинного слова, состоит из двоичных разрядов. Бит может принимать значения 1 или 0.

Байт – основная единица информации. Она содержит восемь двоичных разрядов (8 бит). Восьмиразрядный машинный код служит для представления алфавитно-цифровой информации и позволяет закодировать до 256 различных символов.

Слово – последовательность символов или импульсов, представляющих эти символы. Машинным словом называется специальная последовательность символов, которая может быть прочитана и интерпретирована данным типом ЭВМ. Машинное слово может представлять константу, переменную величину или команду в программе.

Запись – совокупность нескольких слов переменной длины, рассматриваемых как одно целое, т. е. объединенных единым смыслом.

Блок – компактно расположенная по носителю внешнего запоминающего устройства группа записей, считываемая и записываемая в оперативную память машины одной командой.

Файл – последовательная группа данных, состоящая из нескольких блоков, объединенных общим смысловым признаком. Файлы могут иметь различную длину. Для правильной обработки файлов различной длины и структуры на носителе внутреннего запоминающего устройства помимо основной информации записывается служебная информация – метка.

Символ – графический знак, изображающий букву, цифру, служебный знак (например, *, –), математический знак (>, <, = и др.). Совокупность символов, используемая в ЭВМ, представляет алфавит машины.

Поле – двоичный слог в слове или смежные последовательные знаки в записи, имеющие функционально самостоятельное значение и обрабатываемые за одну операцию (например, таблица чисел, вводимая в ЭВМ). Содержащиеся в таблице числа называют элементами поля.

Массив – пакет или блок данных, пересылаемый в машине как одно целое. Массив является единицей информации, объединяющей несколько записей с общим смысловым признаком.


2. Организация работы вычислительной машины

Чтобы выяснить сущность работы ЭВМ, сначала рассмотрим операции, производимые человеком на калькуляторе, выполняющего только арифметические действия.

Примем, что алгоритм и исходные данные задачи заданы и записаны на одном из листков бумаги. В процессе вычислений сначала появятся промежуточные значения, а затем конечные результаты. Их мы также будем фиксировать на листах бумаги. Согласно первой фазе алгоритма, т. е. первому указанию к действию, определяем последовательность действий. Выполнение оператора алгоритма сводится к следующему: нужно отыскать на листах бумаги исходные данные, считать их и перенести на клавиатуру калькулятора, затем можно нажать на кнопку со знаком операции, заданной в операторе. Вычисленный результат операции необходимо занести на лист, если он не будет использован в качестве аргумента следующей операции. Далее вновь обращаемся к алгоритму, чтобы продолжить вычисления. И так до тех пор, пока не будет выполнен оператор «Закончить вычисления».

Рассмотренный процесс вычисления прост. Однако для автоматизации вычислений необходимо располагать записью алгоритма и средством, на котором будут фиксироваться исходные данные, промежуточные и конечные результаты. Необходимо также иметь средства для реализации операторов алгоритма.

Для автоматизации вычислений необходимо листы бумаги, используемые для описания алгоритма и хранения результатов, заменить каким-либо устройством. Оно должно как бы помнить алгоритм, исходные данные, промежуточные и конечные результаты, т. е. должно служить машинной памятью. Машинная память является «складом информации» (рис. 146). В ячейке памяти может храниться одно число или оператор алгоритма. Ячейки нумеруются числами 0, 1, 2 и т. д., называемыми адресами ячеек. Если необходимо записать в память слово, то следует указать адрес ячейки, в которую надо его поместить, и подать слово на вход памяти. Память устроена таким образом, что заданное слово будет передано в ячейку с указанным адресом и будет храниться там как угодно долго. В любой момент, обратившись к памяти, можно получить значение хранимого там слова. Для этого в память нужно послать адрес, определяющий местонахождение требуемого слова, и она через некоторое время выдаст копию слова. При этом содержимое ячейки останется без изменения, так что, записав один раз слово, можно получить его копии сколь угодно раз.